OVERHILLS STREAM AND WETLAND RESTORATION MONITORING REPORT (YEAR 5)

Harnett County, North Carolina EEP Project No. 199

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Submission Date: November 2011

Monitoring Firm:

Stantec Consulting Services Inc 801 Jones Franklin Road, Suite 300 Raleigh, NC 27608

Table of Contents

1.0	Executive Summary	1
2.0	Methodology	3
2.1	Vegetation Assessment	3
2.2	Stream Assessment	3
2.3	Wetland Assessment	3
3.0	References	5
Projec	et Condition and Monitoring Data Appendices	7
App	pendix A. General Figures and Plan Views	7
App	pendix B. General Project Tables	15
App	pendix C. Vegetation Assessment Data	19
App	pendix D. Stream Assessment Data	33
App	pendix E. Wetland Assessment	67
Proje	ct Condition and Monitoring Data Appendices	
Apper	ndix A. General Figures and Plan Views	7
Fig	gure 1 – Location Map	9
Fig	gure 2 – Asset Map	11
Fig	gure 3 – Current Condition Plan View	13
Apper	ndix B. General Project Tables	
Tal	ble 1 – Project Restoration Components	15
Tal	ble 2 – Project History and Reporting Activity	15
	ble 3 – Project Contacts Table	16
Ta	ble 4 – Project Background Table	18
	ndix C. Vegetation Assessment Data	
	ble 5 – Vegetation Plot Mitigation Success Summary Table	19
	otos – Vegetation Monitoring Plot Photos	20
	ble 6 – Vegetation Metadata Table	30
	ble 7 – Stem Count Total of Planted Vegetation by Plot and Species	31
	getation Problem Area Photos (electronic submission only)	
Ve.	getation Problem Area Inventory Table (electronic submission only)	
	ndix D. Stream Assessment Data	
	otos – Stream Station Photos	33
	ble 8 – Visual Morphological Stability Assessment	39
	ble 9 – Verification of Bankfull Events	40
	gures – Cross-Sections	41
_	gures – Longitudinal Profiles	59
	seline Stream Data Summary Table (electronic submission only)	
	orphology and Hydraulic Summary (Reach and XS Parameters) (electronic submission only)	
	eam Problem Area Photos (electronic submission only)	
Str	eam Problem Area Inventory Table (electronic submission only)	
	ndix E. Wetland Assessment Data	
	gures – Water Level and Precipitation Plots	67
Tal	ble 10 – Wetland Hydrology Criteria Attainment	84

This page is intentionally left blank for two-sided printing.

1.0 Executive Summary

The North Carolina Ecosystem Enhancement Program (EEP) restored 4,482 linear feet of Jumping Run Creek and 70 acres of adjacent riparian wetlands located on the Fort Bragg Overhills tract, north of Spring Lake, in Harnett County, North Carolina. Construction of the project began on July 12, 2004 and the restoration was completed on May 30, 2006. The restoration project is located on the north side of Nursery Road (SR 1120) and has a total drainage area of 15.9 square miles. The site had been significantly altered from its natural state. Prior to 1955, the stream was straightened and moved to the west to provide more room for agricultural practices. Previous to restoration activities, the stream was deeply incised with only the largest rain events resulting in overbank flow. The associated wetlands had been drained and cultivated in various row crops for many years. Priority 1 stream restoration was carried out on the project resulting in a restored C type channel which was expected to naturally evolve in some areas to an E5 channel type. The entire restoration area including streambanks and riparian wetlands were planted with vegetation to stabilize the channel and provide shading, food, and habitat. Berms were installed across the site perpendicular to the valley to promote wetland hydrology and create microtopography beneficial for wildlife habitat.

Project goals and objectives for the Overhills stream and wetland restoration project include:

- Restoration of stream dimension, pattern and profile
- Restoration of riverine wetland hydrology and vegetation
- Improvement of current water quality
- Protection of future water quality

Major repair work on the lower reach took place over the winter of 2011. The repair was designed by Wildlands Engineering, Inc. and built by River Works. Construction was completed by mid-February 2011 and planting was completed in early March 2011. According to the construction plans, 1,025 linear feet of stream was relocated to the east of the existing failing stream channel. Seven of the floodplain berms onsite were notched to provide better flow across the wetlands. Some existing vegetation was salvaged and replanted within the limits of disturbance. The remaining area (11.7 acres) was seeded and planted with bareroot seedlings.

The Monitoring Year 5 stem counts within each of the 10 vegetative monitoring plots are included in Table 7 in Appendix C. Vegetation Plot 6 was moved in 2011 since it was a 5x20m streambank plot on the older failing section of stream. A new 10x10m plot, "6R", has been installed on the floodplain of the newly repaired reach. Overall, eight of the plots have over 260 stems per acre (the success criteria for monitoring year five) while two of the plots (VP3 and VP5) have less than 260 stems per acre. Problem areas are referred to as VPA 1 through 20 on the Current Condition Plan View located in Appendix A. In VPA 1, 2, 4, 12, 13, and 14 persistent flooding has occurred and has caused the majority of the planted woody vegetation to die in those areas. Standing water continues to be present in these areas. As previously noted, even though these areas are not supporting the planted woody vegetation, they do and will continue to provide excellent habitat diversity for the site. Other wet areas are present onsite, but woody vegetation is present and viable in these areas and is not a cause for concern at this moment. A few

areas have been noticeably impacted by beaver foraging and are shown on the CCPV as VPA 7, 11, 18, and 19.

Lespedeza is still present in some drier areas onsite; however, a large portion of it has been removed during the repair construction work. Invasive plant species were sprayed on May 3, 2011. It appears that Lespedeza may be reestablishing in the newly repaired floodplain but was not of sufficient size to include on the CCPV. A few areas of Typha have also been observed onsite and seem to be growing in size from previous assessments. Areas of Typha were observed near the wetter areas and are shown on the map as VPA 10, 17 and 20. VPA-15 (Typha) has expanded. As previously noted, the remainder of the floodplain is exhibiting excellent vegetation growth, particularly in the cypress trees.

The lower four cross sections that were located in the failing section of stream (Cross sections 6, 7, 8 and 9) were moved to the repaired reach, and are now called R1, R2, R3 and R4. Currently the new stream is functioning as intended and no major problems were observed. Bank instability upstream of the repair reach was observed in isolated locations, and is primarily the result of scour caused by rootwad failure or concentrated flow over the banks due to beaver impoundments. This minor isolated instability is not likely to expand in size or become a significant problem.

The floodplain is drier than in past monitoring years, especially in the area surrounding Vegetation Plot 3. However, the most northern portions of the site are still inundated with water. Despite ongoing efforts to remove beavers, multiple beaver dams remain, causing large areas of the floodplain to become inundated with water, at times in excess of 1 foot deep. Headcuts are occurring in areas where the inundated water reenters the stream channel from the side. These areas are located at various locations along the stream's right bank. The beaver dams are located near Stations 3+86, 9+00 and 27+77. According to EEP, APHIS removed the beaver dams on the main stem between 8/8/11 and 8/18/11 with an additional trip to remove the large uppermost beaver dam on 10/31/11. As of the survey (9/21/11) beavers were still active on the site and had rebuilt the breeched dams. The CCPV shows beaver dam conditions as of 9/21/11. Continued beaver management will be beneficial to the stability of the site.

The reference well met the hydrology success criteria, with one period of consecutive days of saturation within 12 inches of the ground surface. This 48 day period comprises approximately 21% of the growing season. Additionally, all fifteen groundwater monitoring wells onsite met the hydrology success criteria, with 8 of the wells being within 12 inches of the ground surface for more than 50% of the growing season. During this growing season, it does not appear that the berm removals undertaken in February 2011 negatively affected the wetland hydrology. The dip in water table levels among the gauges on the north end of the site most likely corresponds with the removal of multiple beaver dams. Monthly precipitation averages for 2011 fell between the 30th and 70th percentiles during the growing season in March, June, August and September. For the months of January, February, July, and October, precipitation fell below the 30th percentile. In May, precipitation fell above the 70th percentile.

Summary information and data related to the occurrence of items such as beaver or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.1 VEGETATION ASSESSMENT

The Carolina Vegetation Survey (CVS) Level 2 methodology was utilized to sample vegetation in October 2011. Ten 100m^2 plots have been established throughout the project. In each plot, two plot corners have been permanently located with conduit or rebar. Vegetation Plot 6 was moved in 2011 since it was a 5x20m streambank plot on the older failing section of stream. A new 10x10m plot, "6R", has been installed on the floodplain of the newly repaired reach. As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). Livestakes are counted for success for Plots 1 and 8 since they were set up as 5x20m streambank plots. Leaving out livestakes would falsely skew the data since the majority of the area within each plot is taken up by livestakes. The final vegetative success criteria will be the survival of 260 5-year old trees per acre at the end of the year 5 monitoring period. In the repair area, the vegetative success criteria will also be the survival of 260 5-year old trees per acre for Monitoring Years 5 and 6, and the final Monitoring Year 7. Currently 8 of 10 plots are meeting success criteria and the average for the site is 332 stems per acre.

2.2 STREAM ASSESSMENT

The Upper Reach, classified as a Rosgen C5 stream, flows from the beginning of the project at Station 0+00 to Station 30+77. The Lower Reach, a priority 2 reach with constructed riffles, flows from 30+77 to the end of the project at Station 42+70. This reach break is approximately 200 feet upstream of the old reach break, to correspond with the upstream end of the 2011 repair. Pattern and profile, as well as dimension were monitored on both the Upper and Lower Reach.

A longitudinal profile survey of the entire length of the project was completed in September 2011. Additional data collected included riffle length, riffle slope, pool length and pool spacing. During the longitudinal survey, additional pattern data was collected including channel beltwidth, radius of curvature, meander wavelength and meander width ratio. Stability was also visually assessed.

A total of nine permanent cross-sections were characterized. The lower four cross sections that were located in the failing section of stream (Cross section 6, 7, 8 and 9) were moved to the repaired reach, and are now called R1, R2, R3 and R4. Data collected included, at a minimum, cross-sectional area, bankfull width, bankfull mean depth, bankfull max depth, floodprone width, width to depth ratio, and entrenchment ratio. Stream type was determined in riffle cross-sections only. Success was measured based on whether the channel features stayed within the natural variability of the dimensionless ratios of the reference reaches.

2.3 WETLAND ASSESSMENT

This site is considered to meet the success criteria for wetland hydrology if the groundwater saturation is within 12 inches of the ground surface consecutively for 12.5% of the growing season. Fifteen

groundwater monitoring wells are currently active on the project site. All 15 wells met the success criteria during the growing season of 2011 (Appendix E). The growing season in this area is from March 18th to November 8th for a total of 234 days (NRCS 2002).

A reference well was installed within the reference site on October 2, 2007. Data has been collected since its installation. More specific details regarding the physical and biological characteristics of the reference site can be found in the Overhills Stream and Wetland Restoration Plan.

3.0 References

Harrelson, C.C., C.L. Rawlins and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. United States Department of Agriculture, Fort Collins, CO.

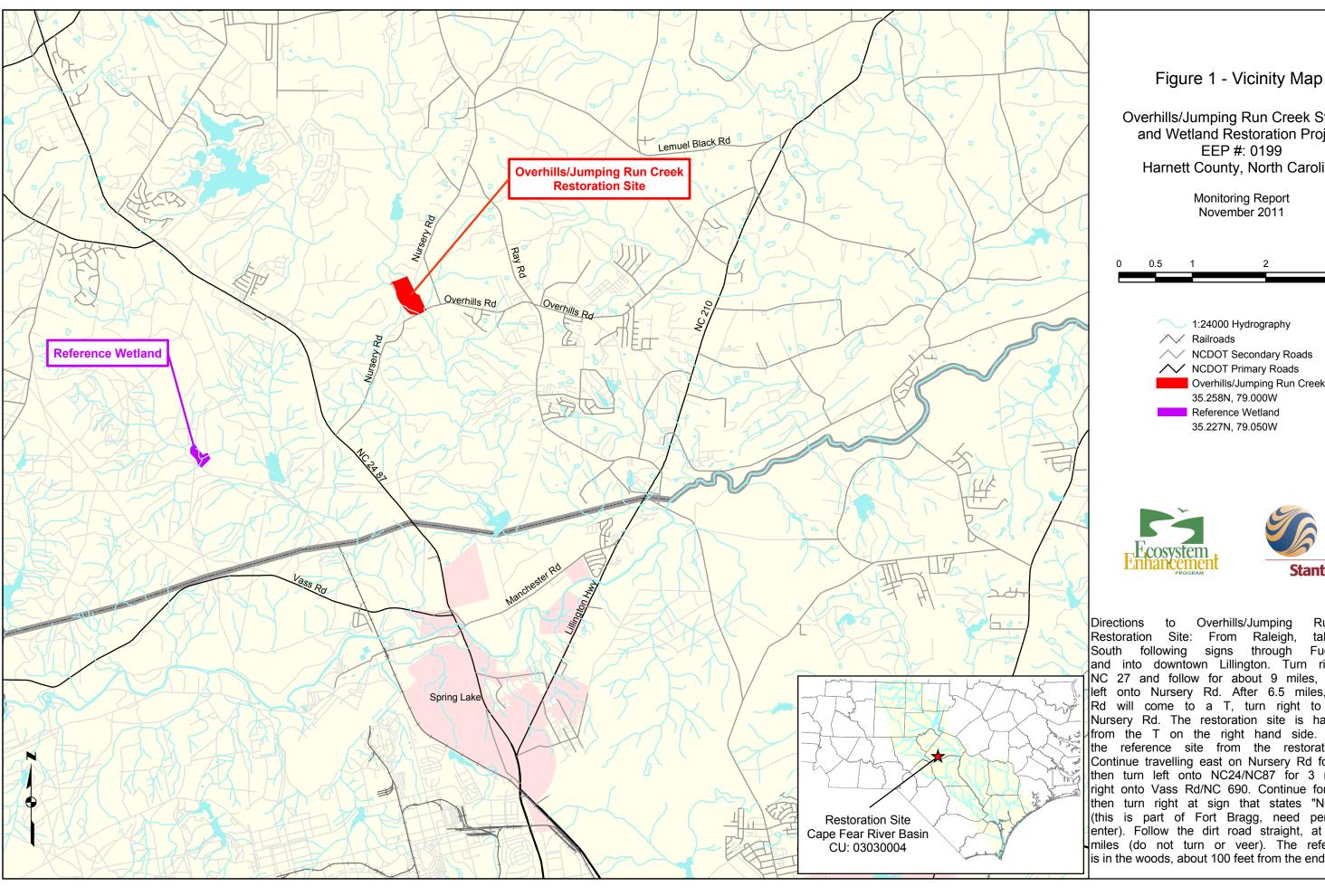
Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm)

NC CRONOS. 2011. NC CRONOS Database – Dunn 4 Nw (312500). North Carolina State University State, Climate Office of North Carolina. http://www.nc-climate.ncsu.edu/cronos

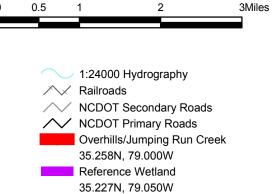
NCEEP. 2009. Revised Table of Contents for 2009 Monitoring Report Submissions. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.2.1 June 1, 2009.

NRCS. 2002. WETS Table for Pope Air Force Base, NC6891. Natural Resource Conservation Service, National Water and Climate Center.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.


Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and surrounding areas. University of North Carolina Herbarium. Chapel Hill, NC. Working draft of January 11, 2007.

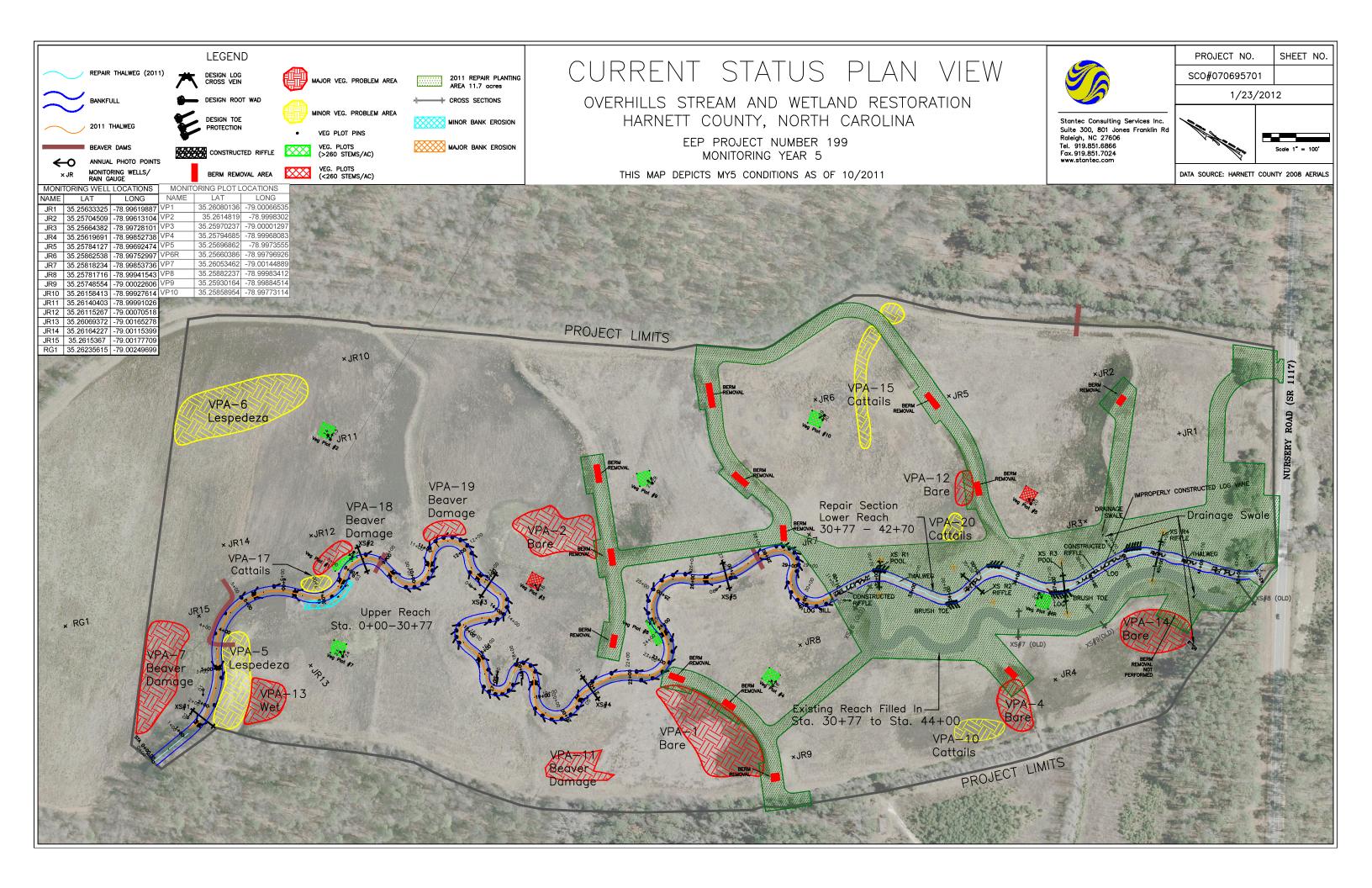
This page intentionally left blank for two-sided printing.


Project Condition and Monitoring Data Appendices

APPENDIX A. GENERAL FIGURES AND PLAN VIEWS

This page intentionally left blank for two-sided printing.

Overhills/Jumping Run Creek Stream and Wetland Restoration Project Harnett County, North Carolina



Directions to Overhills/Jumping Restoration Site: From Raleigh, take US401 South following signs through Fuquay-Varina and into downtown Lillington. Turn right onto NC 27 and follow for about 9 miles, then turn left onto Nursery Rd. After 6.5 miles, Nursery Rd will come to a T, turn right to stay on Nursery Rd. The restoration site is half a mile from the T on the right hand side. To get to the reference site from the restoration site: Continue travelling east on Nursery Rd for 2 miles, then turn left onto NC24/NC87 for 3 miles. Turn right onto Vass Rd/NC 690. Continue for 3.5 miles, then turn right at sign that states "NO POVs" (this is part of Fort Bragg, need permission to enter). Follow the dirt road straight, at least 1.7 miles (do not turn or veer). The reference well is in the woods, about 100 feet from the end of the road.

This page blank for two sided printing.

This page intentionally left blank for two-sided printing.

This page blank for two sided printing.

APPENDIX B. GENERAL PROJECT TABLES

	Table 1. Project Restoration Components Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199					
	Existing Feet/Acres	Type	Approach	Footage or Acreage	Stationing	Comment
Upper Reach		R	P1	3077	0+00 to 30+77	Includes log structures and root wads
Lower Reach	3064	R	P2	1193	30+77 to 42+70	Includes log structures and root wads; step-down to existing channel. Begins at 2011 repair.
Riparian Wetlands	NA	R	-	60.6		Floodplain of restored stream. Area was determined subracting the berm and stream area from the total easement area

R = Restoration

Reach break location and total length changed due to repair of lower reach on new location.

Table 2. Project Activity and Reporting History		
Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199		
Activity or Report	Data Collection Complete	Actual Completion or Delivery
Restoration Plan	NA	March 2003
Final Design - 90%	NA	Dec 2003
Construction	NA	June 2006
Temporary S&E mix applied to entire project area	NA	2004
Permanent seed mix applied to entire project area	NA	Nov 2004
Bare root, containers, and live stakes for majority of site	NA	Dec 2004
Water released into new channel	NA	Oct 2005
Permanent seed mix applied to entire project area	NA	Nov 2005
Bare root, containers, and live stakes for remainder of site	NA	Dec 2005
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	July 2007	Nov 2007
Year 1 Monitoring	Nov 2007	Nov 2007
Year 2 Monitoring	Nov 2008	Nov 2008
Year 3 Monitoring	Nov 2009	Nov 2009
Year 4 Monitoring	Nov 2010	Nov 2010
Repair of Lower Reach	March 2011	March 2011
Mitigation Plan Addendum	May 2011	May 2011
Year 5 Monitoring	Nov 2011	Nov 2011
Year 6 Monitoring (Repair)		
Year 7 Monitoring (Repair)		

NA = Not Applicable

P1 = Priority 1, P2 = Priority 2

Table 3A. Cont	acts
Overhills/Jumping Run Creek Restoration	Project - EEP Project No. 199
Designer	BLUE: Land Water Infrastructure 1271 Old US Highway #1 South Southern Pines, NC 28387 Phone: 910-692-6461
Construction Contractor	Vaughn Contracting, Inc P.O. Box 796 Wadesboro, NC 28170 Phone: 704-694-6450
Surveying Subcontractor	Barbara H. Mulkey Engineers, Inc 7516 E. Independence Blvd, Suite 100 Charlotte, NC 28227 Phone: 704-537-7300
Site Preparation Subcontractor	Herndon, Inc P.O. Box 36 Lugoff, SC 29078 Phone: 803-513-8002
Erosion Control Subcontractor	Carolina Environmental Contractors, Inc P.O. Box 1905 Monut Airy, NC 27030 Phone: 336-320-3849
Vegetation Planting Contractor & Nursery Stock Supplier for livestakes and potted plants	North State Environmental, Inc 2889 Lowery Street Winston-Salem, NC 27101 Phone: 339-725-2010
Nursery Stock Supplier for bare roots	International Paper
Seed Mix Sources	Unknown
Monitoring Performers	Stantec Consulting Services, Inc 801 Jones Franklin Rd, Ste 300 Raleigh, NC 27606
Stream Monitoring POC Vegetation Monitoring POC Wetland Monitoring POC	David Bidelspach 919-218-0864 Amber Coleman 919-851-6866 Amber Coleman 919-851-6866

Table 3B. Contacts - 2011 Repair		
Overhills/Jumping Run Creek Restoration Project - EEP Project No. 199		
Designer	Wildlands Engineering, Inc.	
	5605 Chapel Hill Road, Suite 122	
	Raleigh, NC 27607	
Primary Project Design POC	Daniel Taylor 919-851-9986, ext 105	
Construction Contractor	River Works, Inc.	
	8000 Regency Parkway, Suite 200	
	Cary, NC 27518	
Construction Contractor POC	Will Pedersen 919-459-9001	
Surveying Contractor	Turner Land Surveying, PLLC	
	P.O. Box 41023	
	Raleigh, NC 27629	
Survey Contractor POC	David Turner, PLS, 919-875-1378	
Planting Contractor	Winstead's Reforestation	
	536 Jackson Road	
	Nashville, NC 27856	
Planting Contractor POC	David Winstead 252-462-0305	
Bare Root Trees	Mellow Marsh Farm, Inc.	
	1312 Woody Store Road, Siler City, NC 27344	
	Sharon Day 919-742-1200	
	ArborGen (SuperTree Seedlings)	
	5594 Highway 38 South, Blenheim, SC 29616	
	800-222-1290	
	Superior Trees, Inc.	
	PO Drawer 9400, Lee, FL 32059	
	850-971-5159	
Brush Material/Live Stakes	Foggy Mountain Nursery LLC	
	2251 Ed Little Road, Creston, NC 28615	
	Glen Sullivan 336-384-5323	
Seed Mix Sources	Green Resources	
	PO Box 429, Colfax, NC 27235	
	Rodney Montgomery 336-855-6363	

Table 4. Project Background Table		
Overhills/Jumping Run Creek Restoration		
Project County	Harnett County	
Drainage Area	15.9 square miles	
Drainage impervious cover estimate (%)	5%	
Stream Order	3rd	
Physiographic Region	Sandhills	
Ecoregion	Sandhills	
Rosgen Classification of As-built	C5	
Cowardin Classification	Palustrine	
Dominant soil types	Roanoke	
	Bibb	
	Wehadkee	
	Augusta	
Reference site ID	Gum Swamp	
USGS HUC for Project	03030004	
USGS HUC for Reference	03030004	
NCDWQ Subbasin for Project	03-16-14	
NCDWQ Subbasin for Reference	03-16-13	
NCDWQ Classification for Project	С	
NCDWQ Classification for Reference	С	
Any portion of any project segment 303d listed?	No	
Any portion of any project segment upstream of a 303d listed		
segment?	No	
Reasons for 303d listing or stressor	No	
Percent of project easement fenced	0%	

APPENDIX C. VEGETATION ASSESSMENT DATA

Table 5 - Vegetation Plot Mitigation Success			
Summary			
Overhills/	Jumping Run C	reek Restoration	
Pro	ject / EEP Proje	ct No. 199	
Vegetation			
Vegetation	Density Met		
Plot ID	(260 stems/acre)	Tract Mean	
VP1	Y (283)		
VP2	Y (283)		
VP3	N (202)		
VP4	Y (324)		
VP5	N (121)	80%	
VP6R*	Y (405)	(332 stems/acre)	
VP7	Y (364)		
VP8	Y (567)		
VP9	Y (324)		
VP10	Y (445)		

^{*}Relocated due to lower reach repair

VEGETATION MONITORING PLOT PHOTOS

Photo Station 11: Vegetation Plot 1 looking northwest (10/11/11).

Photo Station 12: Vegetation Plot 1 looking west (10/11/11)

Photo Station 13: Vegetation Plot 2 looking northeast (10/11/11)

Photo Station 14: Vegetation Plot 2 looking east (10/11/11)

Photo Station 15: Vegetation Plot 3 looking northwest (10/10/11)

Photo Station 16: Vegetation Plot 3 looking west (10/10/11)

Photo Station 17: Vegetation Plot 4 looking northeast (10/11/11)

Photo Station 18: Vegetation Plot 4 looking east (10/11/10)

Photo Station 19: Vegetation Plot 5 looking northeast (10/11/11)

Photo Station 20 Vegetation Plot 5 looking east (10/11/11)

Photo Station 21 Vegetation Plot 6R looking northwest (10/11/11)

Photo Station 22 Vegetation Plot 6R looking north (10/11/11)

Photo Station 23 Vegetation Plot 7 looking north (10/11/11)

Photo Station 24 Vegetation Plot 7 looking northeast (10/11/11)

Photo Station 25 Vegetation Plot 8 looking northeast (10/11/11)

Photo Station 26 Vegetation Plot 8 looking east (10/11/11)

Photo Station 27 Vegetation Plot 9 looking north (10/11/11)

Photo Station 28 Vegetation Plot 9 looking northeast (10/11/11)

Photo Station 29 Vegetation Plot 10 looking northwest (10/11/11)

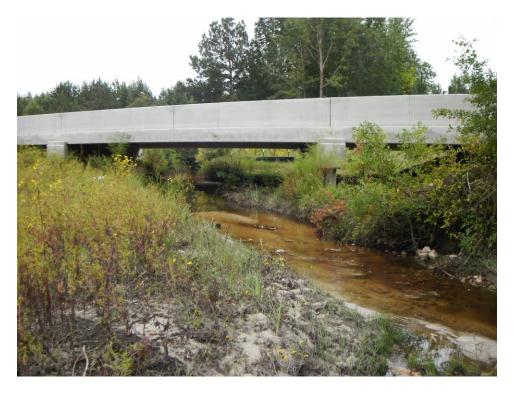

Photo Station 30 Vegetation Plot 10 looking west (10/11/11)

Table 6. Vegetation Metadata

Table 6. Vegetation Metadata	
Report Prepared By	Alex Baldwin
Date Prepared	11/6/2011 12:07
database name	Stantec_Overhills2011_A.mdb
database location	U:\171300316\project\1-Overhills\site_data\cvs
computer name	BALDWINA
file size	43790336
DESCRIPTION OF WORKSHEETS I	
	Description of database file, the report worksheets, and a
Metadata	summary of project(s) and project data.
	Each project is listed with its PLANTED stems per acre, for
Proj, planted	each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each
	year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
	List of plots surveyed with location and summary data (live
Plots	stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of
Damage	occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species
Planted Stems by Plot and Spp	for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species
	(planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	199
project Name	Overhills Stream and Wetland Restoration
Description	Stream and Wetland Restoration
River Basin	Cape Fear
length(ft)	4482
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	0

																								Planted by Plot and																		
																				Overhills	/Jumping I	Run Creek Re	estoratio	on Project / EEP Pro	oject No	. 199																
																ita (MY5 20																			nual Means							
				01-0006R		erhills-01-0			ls-01-0002		Overhills-01			rhills-01-0			ills-01-0005		erhills-01-0			hills-01-0008		EOverhills-01-000		EOverhills-01-0	010		5 (2011)	_	MY4 (2010	<i>'</i>	MY3 (,		MY2 (200			Y1 (2007)		MY0 (200	
Scientific Name	Common Name	Species Type	PnoLS	P-all T	PnoLS	P-all	T PnoL	S F	P-all T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all T	PnoLS	P-all	T	PnoLS	P-all T	Pn	oLS P-all	T P	PnoLS P-all	T	PnoLS	P-all T	PnoLS	P-all	T	PnoLS P	-all T	PnoLS	P-al			P-all T	PnoLS	P-all	d
ıbrum	red maple	Tree													16			5		7			12		4		8			52		32			14		10					
anthus occidentalis	common buttonbush	Shrub Tree					6																						4	6	1	10 10	1	11	11	1	11 11	1	1 11	11	1	11
amomum	silky dogwood	Shrub				1	1															5	7					1	6	8	1	12 12	1	12	12	1	11 11	1	1 12	12	1	13
racemiflora	swamp titi	Shrub Tree				1	1																					1	1	1	1	1 1	1	1	1	1	1 1	1	1 1	1	1	1
ros virginiana	common persimmon	Tree																	3	3 3	1	1 1	1					4	4	4	4	4 4	3	3	3							
ius pennsylvanica	green ash	Tree	1	1	1			1	1	1	2	2 2		3 3	3				1	1 1				1 1	1			9	9	9	8	8 8	7	7	7	7	7 7	7	7 7	7	7	7
ecidua	possumhaw	Shrub Tree																																			1	1				
ambar styraciflua	sweetgum	Tree													5								1		1		8			15		14			9		Ē	5				
lendron tulipifera	tuliptree	Tree																					1							1												
lia grandiflora	southern magnolia	Tree			1		1 1																								2	2 2	2	2	2	2	2 2	2	2 2	2	3	
a cerifera	wax myrtle	Shrub Tree	1	1	1															1 1	1	1 1	1					2	2	2	2	2 2	2	2	2	2	2 2	2	2 2	2	2	
	tupelo	Tree			1		1 1																									1										
biflora	swamp tupelo	Tree	2	2	2		1 1				1	1 2		3 3	3	1	1	2	1	1 4	- 2	2 2	5	3 3	3	5 !	5 7	18	18	28	21	21 28	19	19	20	23	23 23	3 2	23 23	23	21	2
taeda	loblolly pine	Tree								9					6								2		12		2			31		42			67		35	5		\neg		
us nigra	water oak	Tree																			1	1 1	1					1	1	1	1	1 1	1	1	1	1	1 1	1	1 1	1	1	_
us phellos	willow oak	Tree	1	1	1										1 1					1 1								1	1	1	4	4 4	4	4	4	2	2 7	2	4 4	4	4	_
igra	black willow	Tree					3															1	2						2	5		5 5		4	4		6 7	7	6	6		_
ucus	elderberry	Shrub Tree	2	2	2												1			1 1								2	2	2						-				+		_
icus canadensis	Common Elderberry				7																1	1 1	1					1	1	1	2	6 6	2	6	7	1	8 8	3	1 8	8	1	1
ucus nigra	European black elder																1			1 1																1	1 1	1	1 1	1	1	_
dium distichum	bald cypress	Tree	3	3	3			6	6	6	2	2 2		2 2	2	2	2	2	4	4 4		2 2	2	4 4	4	6 6	6 6	31	31	31	29	29 29	29	29	29	27	27 27	7 2	27 27	27	27	27
odendron radicans	eastern poison ivv	Shrub Vine													7.5		1			1 1										7.5						-	-	1		+-		_
own	,	unknown																		1 1																2	2 7	2	3 3	3	3	3
	· L	Stem count	10	10	10	2	11	7	7	16	5	5 6		8 8	43	3	3	9	9	9 19	5	3 14	36	8 8	25	11 1:	1 31	71	82 2	06	76 1	05 201	72	101	193	71	104 156	5	74 108	108	73	11
		size (ares)		1		1			1		1	-, -		1			1		1	-1		1		1		1			10		10		1			10			10		10	
		size (ACRES)	0	.02	1	0.02		0	.02		0.02			0.02			0.02		0.02	- 1		0.02		0.02		0.02			0.25		0.25		0.			0.25		1	0.25	+-	0.25	
		Species count	6	6	6	2	1 4	2	2	3	3	3 3		3 3	. 7	2	2	3	4	4 5	f	5 8	12	3 3	6	2	2 5	11	13	18	12	13 17	12	13	16	13	14 18		13 14	14		1
		Stems per ACRE	405	405	405	81 28	445	283	283	647	202	202 243	32	4 324	1720	121	121	64 3	364 3	4 769	374	567	1/157	324 324	1012	445 44	5 1255	287	332 8	132		25 813	291	409			421 631		9 437	137		45

APPENDIX D. STREAM ASSESSMENT DATA

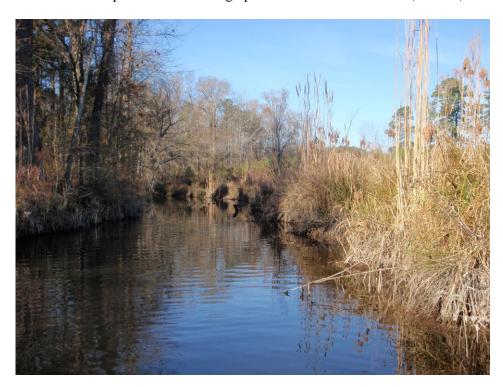

Photo 1 – Evidence of bankfull overflow near Station 42+00 – sediment on floodplain (9/21/11)

Photo 2 – Repaired reach looking upstream near Station 36+00 (2/23/11)

Photo 3. Repaired reach looking upstream near Station 35+50 (9/21/11)

Photo Station 1 – Looking upstream at beginning of project (12/13/11)

Photo Station 2 – Cross Section 1 – looking downstream (12/13/11)

Photo Station 3 – Cross Section 2 – looking downstream (9/21/11)

Photo Station 4 – Cross Section 3 – looking downstream (9/21/11)

Photo Station 5 – Cross Section 4 – looking downstream (9/21/11)

Photo Station 6 – Cross Section 5 – looking downstream (9/21/11)

Photo Station 7 –Cross Section R1 – looking downstream (9/21/11)

Photo Station 8 – Cross Section R2 – looking downstream (9/21/11)

Photo Station 9 – Cross Section R3 – looking downstream (9/21/11)

Photo Station 10 – Cross Section R4 – looking downstream (9/21/11)

	Exhibit Table 8A - Visual Morphological	Stability Asses	sment - Uj	pper Reach		
	Overhills/Jumping Run Creek	k - EEP Projec	t No. 199			
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	14	15		93%	
	2. Armor stable (eg no displacement?)	N/A	N/A			
	3. Facet grade appears stable?	15	15		100%	
	4. Minimal evidence of embedding/fining?	N/A	N/A			
	5. Length appropiate?	10	14		71%	88%
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	12	19		63%	
	2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	13	19		68%	
	3. Length appropriate?	12	19		63%	65%
C. Thalweg	Upstream of meander bend (run/inflection) centering?	19	19		100%	
	Downstream of meander (glide/inflection) centering?	19	19		100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	19	19		100%	
	2. Of those eroding, # w/concomitant point bar formation?	N/A	N/A		0.454	
	3. Apparent Rc within spec?	16	19		84%	0.504
E. Bed General	Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation)	19	3100	100	97%	95%
	2. Channel bed degradation - areas of increasing down-cutting or head-cutting?		3100	100	97%	97%
F. Bank	1. Actively eroding, wasting, or slumping bank?		3100	50	98%	98%
G. Vanes	1. Free of back or arm scour?	14	15		93%	
	2. Height appropriate?	12	15		80%	
	3. Angle and geometry appear appropriate?	10	15		67%	
	4. Free of piping or other structural failures?	12	15		80%	80%
H. Wads/Boulders	1. Free of scour?	12	N/A		NA	
	2. Footing stable?	N/A	N/A		NA	NA

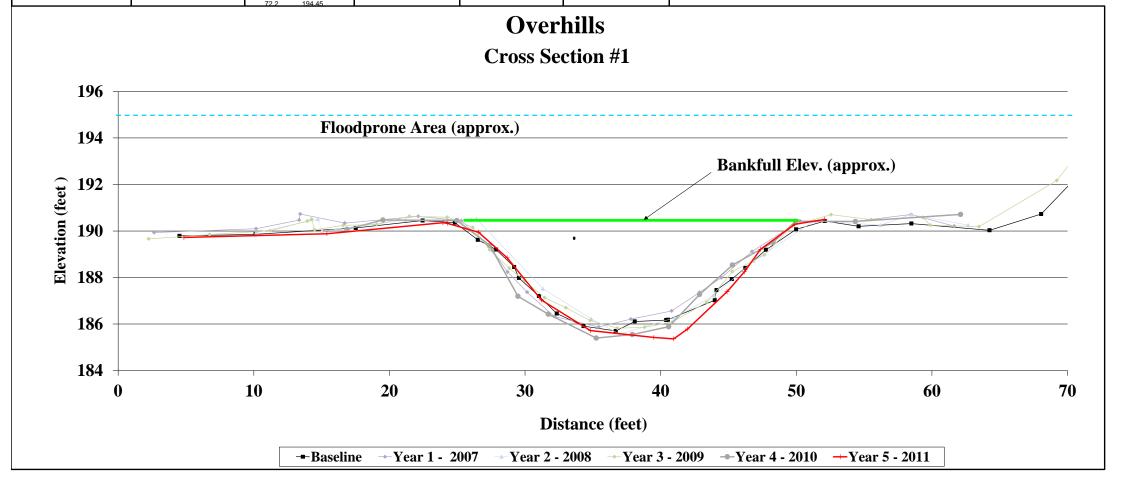
	Exhibit Table 8B - Visual Morphological S Overhills/Jumping Run Creek	•		ower Reach		
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	8	8		100%	
	2. Armor stable (eg no displacement?)	8	8		100%	
	3. Facet grade appears stable?	8	8		100%	
	4. Minimal evidence of embedding/fining?	4	8		50%	
	5. Length appropriate?	6	8		75%	85%
	1. Present? (e.g. not subject to severe aggrad. or				7577	
B. Pools	migrat.?)	8	8		100%	
	2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	4	8		50%	
	3. Length appropriate?	8	8		100%	83%
C. Thalweg	Upstream of meander bend (run/inflection) centering?	6	6		100%	
	2. Downstream of meander (glide/inflection) centering?	6	6		100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	6	6		100%	
	2. Of those eroding, # w/concomitant point bar formation?	0	0		100%	
	3. Apparent Rc within spec?	6	6		100%	
	4. Sufficient floodplain access and relief?	6	6		100%	100%
E. Bed General	General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing		1200	0	100%	
	down-cutting or head-cutting?		1200	0	100%	100%
F. Bank	Actively eroding, wasting, or slumping bank?		1200	0	100%	100%
G. Vanes	1. Free of back or arm scour?	0	1		0%	
	2. Height appropriate?	0	1		0%	
	3. Angle and geometry appear appropriate?	0	1		0%	
	4. Free of piping or other structural failures?	0	1		0%	0%
H. Wads/Boulders	1. Free of scour?	5	5		100%	
	2. Footing stable?	5	5		100%	100%

		Table 9 - Verification of Bankfull I	Events
	Overhills/Jumpin	ng Run Creek Restoration Project	- EEP Project No. 199
Date of Data	Date of	Modbod	Dlasks
Collection	Occurrence	Method	Photo
2011	September 2011	Field observation	Appendix D, Photo 1

e Overhills

Cross Section 1

Pool


As Built -7/04/08, Year 1 - 11/09/08, Year 2 - 8/12/08, Year 3 - 8/15/09, Year 4-09/10, Year 5 09/11

Crew	As Built - Bidelspach/Jean/C	seenen, Year 1&2 - Geenen/Ballestero, Ye	ar 3 - Jean/Geenen, Year 4 -Jean/Geener	n, Year 5 - Jean/Mazzochi/Baldwin		
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Basel
	2011 Survey	2010 Survey	2009 Survey	2008 Survey	2007 Survey	Surve

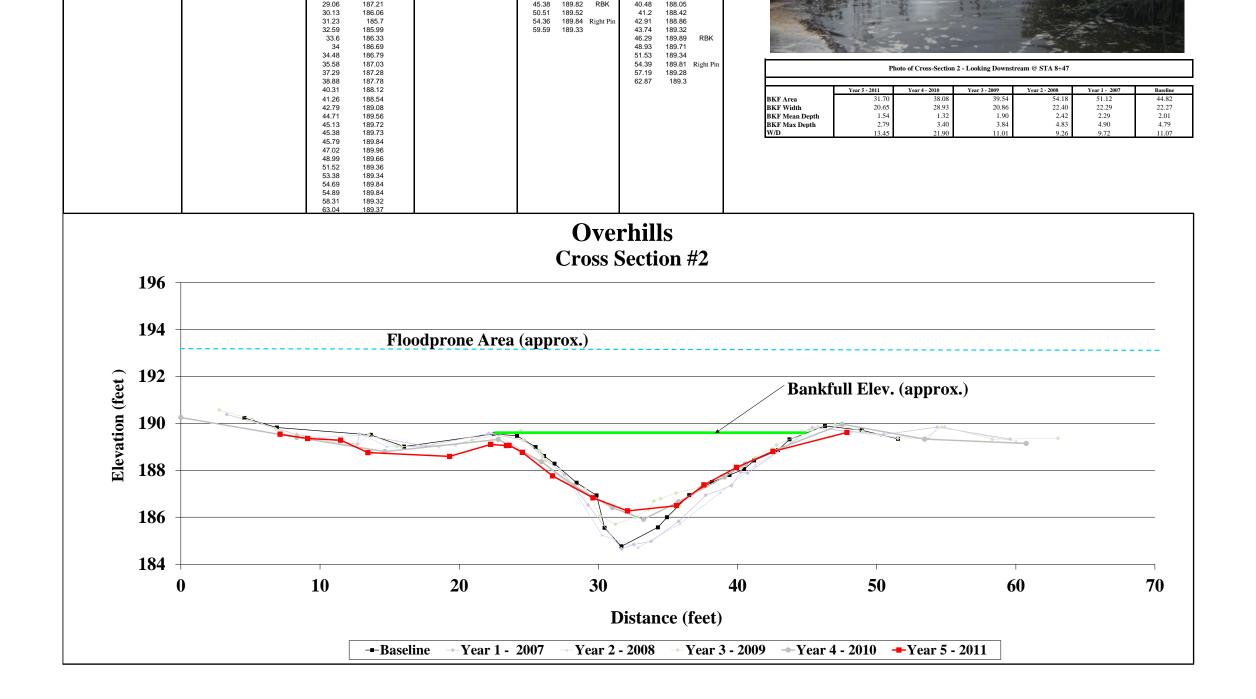
	Year 5 - 2011 2011 Survey			ear 4 - 2010 010 Survey			Year 3 - 2009 2009 Survey	2	7ear 2 - 2008 2008 Survey		2	ear 1 - 200 2007 Survey	,		Baseline Survey	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation		Elevation 1	Notes		Elevation		Station	Elevation	
4.85	189.72		16.87	190.07		2.25	189.66	10.17	189.93		2.65		Left Pin	4.52		Left Pin
15.4 23.95	189.884		19.52	190.47 190.45		6.75 11.21	189.85 190.01	14.73	190.51 190		10.17 13.35	190.1 190.47		10.13 17.52	189.86	
23.95	190.354 190.329		24.97 27.4	189.38		11.21	190.01	15.03 21.21	190.47		13.35	190.47		17.52 22.45	190.13 190.45	
26.58	189.944		29.48	187.19		14.24	190.43	26.03	190.47		16.72	190.73		24.83	190.45	
28.69	188.844		31.72	186.42		14.24	190.5	26.42	190.40		22.13	190.63		26.52	189.62	
31.2	187.031		35.25	185.39		14.48	190.05	31.32	187.52		25.3	190.45	LBK	27.86	189.2	
34.82	185.717		37.91	185.54		16.59	190.24	34.88	186.22		27.61	189.17	LDK	29.2	188.45	
39.5	185.419		40.59	185.88		19.06	190.28	36.98	185.56		28.71	188.24		29.55	187.98	
40.96	185.358		42.87	187.27		21.47	190.63	41.03	186.27		30.15	187.37		31.02	187.2	
41.98	185.779		45.29	188.54		24.26	190.59	43.96	187.23		32.17	186.32		32.34	186.45	
44.9	187.391		48.29	189.51		24.97	190.45	46.86	188.72		35.43	185.87		34.32	185.91	
46.18	188.244		49.95	190.42	BKF	26.14	190.15	51.33	190.44		37.8	186.21		36.69	185.7	
47.37	189.211		54.36	190.41		27.39	189.19	56.2	190.25		40.81	186.56		38.09	186.11	
49.89	190.29	BKF	62.11	190.71		28.84	188.4	58.46	190.71		42.86	187.36		40.41	186.17	
52.1	190.5					29.97	187.86	62.68	190.25		44.47	187.99		40.54	186.18	
						31.45	187.13				46.74	189.12		43.99	187.02	
						33.01 34.81	186.7 186.15				50.28 54.26	190.43 190.41	RBK	44.12 45.25	187.46 187.93	
						36.8	185.82				58.46		Right Pin	46.24	188.41	
						38.82	185.86				61.65	190.71	Kight I ili	47.76	189.19	
						40.87	186.09				01.00	100.21		49.99	190.07	
						43.41	186.94							52.1	190.43	
						45.28	188.25							54.6	190.2	
						47.65	188.97							58.49		Right Pi
						49.72	190.23							64.25	190.03	_
						52.57	190.7							68.06	190.73	
						55.53 59.33	190.49 190.58							70.27 73.77	192.07 192.89	
						59.9	190.25									
						63.47	190.19									
						69.21	192.17									
			I			70.0	104 45	I			I					

	Phot	o of Cross-Section	1 - Looking Downs	stream @ STA 1+6	64	
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline
BKF Area	73.61	75.30	69.97	67.39	67.45	71.89
BKF Width	25.38	24.91	25.19	24.42	24.66	26.87
BKF Mean Depth	2.90	3.02	2.78	2.76	2.74	2.68
BKF Max Depth	5.00	5.00	4.54	4.80	4.49	4.66
W/D	8.75	8.24	9.07	8.85	9.02	10.04

 ne
 Overhilts

 on
 Cross Section 2

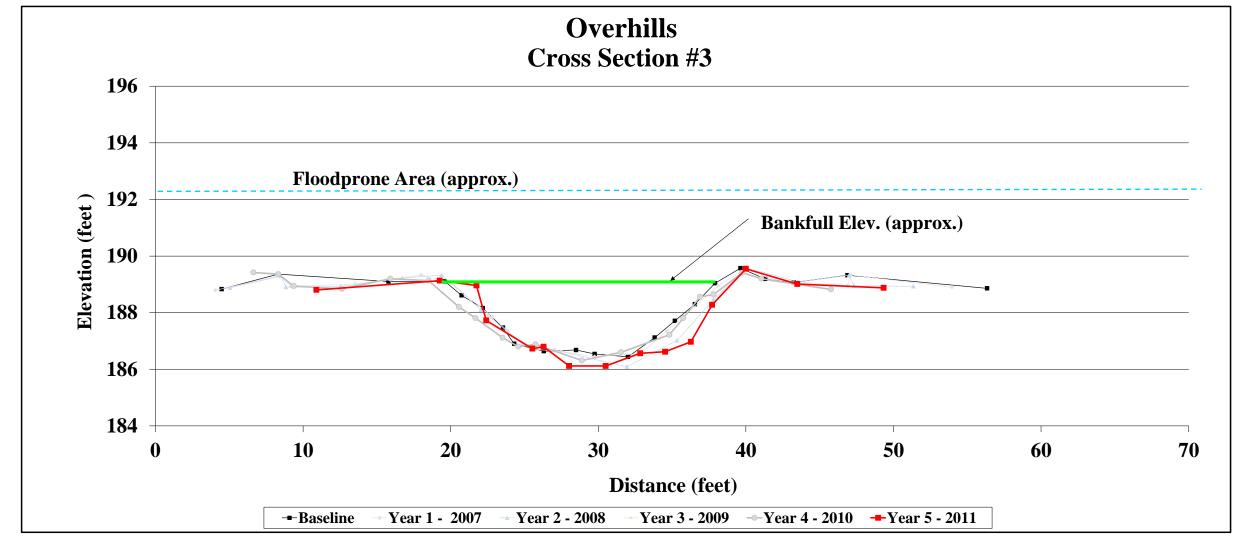
 Pool
 Pool


 As Built -7/04/08, Year 1 - 11/09/08, Year 2 - 8/12/08, Year 3 - 8/15/09, Year 4 - 09/10, Year 5 09/11

 As Built - Bidelspach/Jean/Geenen, Year 1 & 2 - Geenen/Ballestero, Year 3 - Jean/Geenen, Year 4 - Jean/Geenen, Year 4 - Jean/Geenen, Year 5 - Jean/Geenen, Year 5 - Jean/Geenen, Year 6 - Jean/Geenen, Year 7 - Jean/Geenen, Year 8 - Jean/Geenen, Year 9 - J

	Year 5 - 2011 2011 Survey			Year 4 - 2010 2010 Survey			ear 3 - 2009 2009 Survey			Year 2 - 2008 2008 Survey		Year 1 - 200 2007 Survey			Baseline Survey	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes	Station	Elevation		Station	Elevation	Notes
7.13	189.534		0	190,247		2.75	190.57	,	9.58	189.38	3.3	190.38		4.56	190.23	
9.11	189.356		8.34	189.404		5.11	190.18	3	13.16	189.5	8.33	189.53		6.9	189.82	
11.49	189.28		14.65	188.798		6.81	189.76	i	14.81	189	12.7	189.11		13.65	189.51	Left Pin
13.44	188.753		22.81	189.316		9.32	189.36	i	19.75	189.07	12.8	189.54	Left Pin	16.04	189.01	
19.31	188.591		25.91	188.369		12.6	189.03	3	22.42	189.6	17.6	189.03		22.49	189.55	LBK
22.27	189.105		28.25	187.339		13.51	189.53	3	25.82	188.4	22.12	189.57	LBK	24.16	189.47	
23.4	189.052		31.01	186.412		15.54	189.01		28.09	187.31	24.71	189.27		25.49	188.99	
23.59	189.063	BKF	33.25	185.911		15.87	189)	30.26	185.24	26	188.58		26.1	188.61	
24.54	188.762		35.76	186.658		18.55	189)	32.87	184.71	27.56	187.82		26.85	188.28	
26.71	187.761		39.04	187.709		20.93	189.29)	35.87	185.72	29.26	186.52		28.44	187.47	
29.62	186.826		40.56	188.27		24.44	189.7	•	38.76	187.05	31.67	184.65		29.87	186.93	
32.1	186.269		42.57	188.833		24.57	189.29)	41.27	188.22	32.55	184.84		30.45	185.55	
35.62	186.495		47.52	189.96		25.72	188.84		45.66	189.8	33.78	184.97		31.66	184.76	
37.59	187.381		53.45	189.327		25.82	188.84		50.32	189.48	35.78	185.83		34.28	185.57	
39.93	188.122		60.75	189.141		25.99	188.61		53.76	189.36	37.72			34.93	186	
42.55	188.801					26.2	188.4		54.37	189.85	39.57	187.34		36.53	186.94	
47.87	189.612					27.23	188.03	3	60.03	189.23	40.23			38.16	187.5	
						27.88	187.53				40.72			39.43	187.8	
						29.06	187.21				45.38		RBK	40.48	188.05	
						30.13	186.06				50.51	189.52		41.2	188.42	
						31.23	185.7				54.36		Right Pin	42.91	188.86	
						32.59	185.99				59.59	189.33		43.74	189.32	
						33.6	186.33							46.29	189.89	RBK
						34	186.69							48.93	189.71	
						34.48	186.79							51.53	189.34	
						35.58	187.03							54.39		Right Pin
						37.29	187.28				1			57.19	189.28	
						38.88	187.78				I			62.87	189.3	
						40.31	188.12				1					

	Ph	oto of Cross-Section	2 - Looking Downst	ream @ STA 8+47		
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline
BKF Area	31.70	38.08	39.54	54.18	51.12	44.82
BKF Width	20.65	28.93	20.86	22.40	22.29	22.27
BKF Mean Depth	1.54	1.32	1.90	2.42	2.29	2.01
BKF Max Depth	2.79	3.40	3.84	4.83	4.90	4.79
W/D	13.45	21.90	11.01	9.26	9.72	11.07



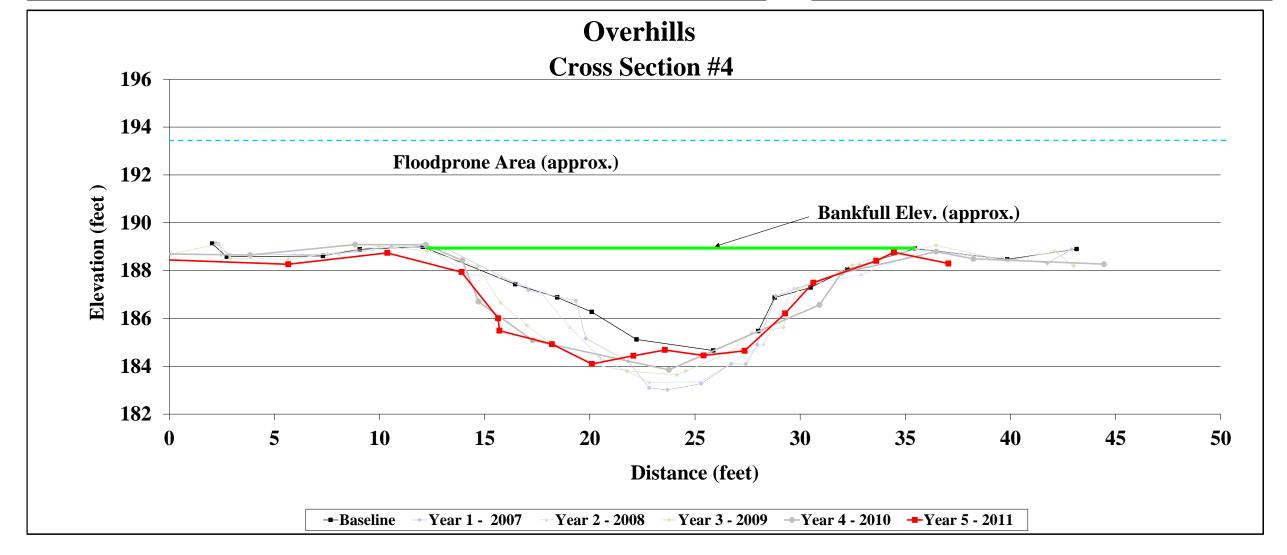
As Built -7/04/08, Year 1 - 11/09/08, Year 2 - 8/12/08, Year 3 - 8/15/09, Year 4 -09/10, Year 5 09/11
As Built - Bidelspach/Jean/Geenen, Year 1&2 - Geenen/Ballestero, Year 3 - Jean/Geenen, Year 4 - Jean/Geenen, Year 5 - Jean/Mazzochi/Baldwin

Station Elevation Notes Station Elevation Elevation Notes Station Elevation Notes Station Elevation Notes Station Elevation Notes Station Elevation Elevation Notes Station Elevation Notes Station Elevation Notes Station Elevation Elevation Notes Station Elevation Elevation Elevation Notes Station Elevation Elevat	Baseline Survey		Year 1 - 2007 2007 Survey		7ear 2 - 2008 2008 Survey			Year 3 - 2009 2009 Survey			Year 4 - 2010 2010 Survey			Year 5 - 2011 2011 Survey	
19.26 189.13 8.32 189.36 8.32 189.36 8.5 189.29 8.41 189.3 Left Pin 21.75 188.96 9.37 188.94 9.37 188.94 12.66 188.92 13.52 189.01 25.54 186.73 15.92 189.2 15.92 189.2 16.71 189.22 18 189.33 26.29 186.79 18.5 189.13 18.5 189.13 19.38 189.33 19.99 189.07 LBK 28.02 186.12 20.56 188.2 20.56 188.2 20.56 188.2 20.56 188.2 22.04 188.1 22.85 187.84 30.5 186.12 21.68 187.81 21.68 187.81 24.87 186.9 23.82 187.37 32.84 186.56 23.52 187.11 23.52 187.11 27.04 186.68 25.46 186.71 34.53 186.62 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 36.27 186.97 25.74 186.88 25.74 186.88 35.34 187.02 29.75 186.44 37.71 188.28 28.99 186.31 28.89 186.31 37.8 188.46 32.85 186.55 40 189.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35 49.33 188.88 35.76 187.81 35.76 187.81 35.76 187.81 34.82 47.1 188.94 47.1 189.32 40.08 189.58 41.78 189.5 41.78 189.5 41.78 189.5 41.78 189.5 41.78 189.5 41.78 189.5 53.96 188.95 41.78 189.3 Right Pin 41.05 189.2 41.05 189.2	Station Elevation Notes	Notes Station	a Elevation Notes	Station	Elevation Notes	Station	Notes	Elevation	Station	Notes	Elevation	Station	Notes	Elevation	Station
18.96 9.37 188.94 9.37 188.94 18.99 9.18 188.93 12.61 187.73 12.62 188.84 12.62 188.84 12.65 188.92 13.52 189.01 18.55 189.13 18.5 189.13 18.5 189.13 18.5 189.13 19.38 189.33 19.99 189.07 LBK 18.62 186.12 18.64 187.81 1	4.48 188.83														10.9
22.41 187.73 12.62 188.84 12.62 188.84 12.56 188.92 13.52 189.01 25.54 186.73 15.92 189.2 15.92 189.2 16.71 189.22 18 189.33 26.29 186.79 18.5 189.13 18.5 189.13 19.38 189.33 19.99 189.07 LBK 28.02 186.12 20.56 188.2 20.56 188.2 22.04 188.1 22.85 187.84 30.5 186.12 21.68 187.81 21.68 187.81 24.87 186.9 23.82 187.37 32.84 186.56 23.52 187.11 23.52 187.11 27.04 186.68 25.46 186.71 34.53 186.62 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 36.27 186.97 25.74 186.88 25.74 186.88 35.34 187.02 29.75 186.44 37.71 188.28 28.89 186.31 37.8 188.46 32.85 186.55 40 189.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35	8.32 189.36 Left													189.13	
15.92 189.2 15.92 189.2 16.71 189.22 18 189.33 19.99 189.07 LBK 180.05 186.12 20.56 188.2 20.56 188.2 20.56 188.2 20.4 188.1 22.85 187.84 20.55 186.12 21.68 187.81 21.68 187.81 24.87 186.9 23.82 187.37 24.87 186.56 24.58 186.8 24.58 186.8 31.94 186.69 27.49 186.63 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 27.49 186.63 26.27 186.97 25.74 186.88 25.74 186.8 35.34 187.02 29.75 186.44 37.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 31.53 186.6 31.53 186.6 40.02 189.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35 189.31 188.88 35.74 189.01 34.82 187.22 34.82 187.22 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 189.33 188.88 35.76 187.81 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 36.89 188.56 37.81 188.64 37.81 188.64 51.35 188.95 41.78 189.15 RBK 37.81 188.64 37.81 188.64 51.35 189.91 41.05 189.2 53.96 188.9	15.78 189.1														
18.5 189.13 18.5 189.13 19.38 189.33 19.99 189.07 LBK 20.56 188.2 20.56 188.2 22.04 188.1 22.85 187.84 20.56 188.2 21.68 187.81 24.87 186.9 23.82 187.37 21.68 186.56 23.52 187.11 23.52 187.11 27.04 186.68 25.46 186.71 24.53 186.62 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 25.46 186.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 31.53 186.6 31.53 186.6 31.53 186.6 32.5 186.5 31.53 186.6 31.53 186.5 31.53 31.	19.61 189.1														
18.02 186.12 20.56 188.2 20.56 188.2 22.04 188.1 22.85 187.84 30.5 186.12 21.68 187.81 21.68 187.81 24.87 186.9 23.82 187.37 30.5 186.62 23.52 187.11 23.52 187.11 27.04 186.68 25.46 186.71 44.53 186.62 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 46.27 186.97 25.74 186.88 25.74 186.88 35.34 187.02 29.75 186.44 47.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 40 189.55 31.53 186.6 31.53 186.6 31.53 186.6 31.53 186.6 34.65 187.35 40 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 49.33 188.88 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 36.89 188.56 36.89 188.56 47.33 188.95 41.78 189.15 RBK 37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 41.05 189.2 41.05 189.2 53.96 188.9	20.74 188.61 LB													186.73	5.54
30.5 186.12 21.68 187.81 21.68 187.81 24.87 186.9 23.82 187.37 24.84 186.56 23.52 187.11 23.52 187.11 27.04 186.68 25.46 186.71 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 27.49 186.63 26.27 186.97 25.74 186.88 35.34 187.02 29.75 186.44 27.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 31.53 186.6 31.53 186.6 40.02 189.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35 31.48 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 31.53 188.88 35.76 187.81 47 189.32 40.08 189.58 36.89 188.56 37.81 188.64 37.81 188.64 37.81 188.64 37.81 188.64 37.81 188.64 39.75 189.41 39.75 189.41 41.05 189.2 53.96 188.9	22.18 188.16													186.79	6.29
186.56 23.52 187.11 23.52 187.11 27.04 186.68 25.46 186.71 185.27 186.97 24.58 186.8 24.58 186.8 25.46 186.63 186.27 186.97 25.74 186.88 25.46 186.81 187.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 187.81 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 183.88 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 188.89 188.64 37.81 188.64 51.35 188.95 41.78 189.15 188.64 39.75 189.41 39.75 189.41 47.05 189.2 188.91 41.05 189.2 41.05 189.2 187.11 27.04 186.68 25.46 186.71 27.04 186.68 25.46 186.71 27.04 186.68 25.46 186.71 27.04 186.69 186.69 31.94 186.69 35.34 187.02 29.75 186.44 32.85 38.86 34.65 187.35 38.87 38.98 38.11 188.95 41.78 189.15 RBK 47.1 189.33 Right Pin 41.05 189.2 53.96 188.9	23.54 187.47			22.85	188.1	22.04		188.2	20.56		188.2	20.56		186.12	28.02
34.53 186.62 24.58 186.8 24.58 186.8 31.94 186.09 27.49 186.63 46.27 186.97 25.74 186.88 25.74 186.88 35.34 187.02 29.75 186.44 37.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 40 189.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35 33.48 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 49.33 188.88 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 37.81 188.64 37.81 188.64 51.35 188.95 41.78 189.15 RBK 39.75 189.41 39.75 189.41 39.75 189.2 41.05 188.9 41.05 189.2 41.05 189.2 53.96 188.9	24.3 186.9	24.3	82 187.37	23.82	186.9	24.87		187.81	21.68		187.81	21.68		186.12	30.5
186.27 186.97 25.74 186.88 25.74 186.88 35.34 187.02 29.75 186.44 187.71 188.28 28.89 186.31 28.89 186.31 37.8 188.46 32.85 186.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35 34.81 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 36.89 188.56 37.81 188.64 37.81 38.64 37.81 39.75 189.41 39.75 189.41 39.75 189.41 41.05 189.2 53.96 188.9	26.31 186.64	26.31	46 186.71	25.46	186.68	27.04		187.11	23.52		187.11	23.52		186.56	2.84
188.28	28.49 186.68	28.49	49 186.63	27.49	186.09	31.94		186.8	24.58		186.8	24.58		186.62	4.53
40 189.55 31.53 186.6 31.53 186.6 40.02 189.58 34.65 187.35 3.48 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 9.33 188.88 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 41.78 189.15 RBK 37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 47.1 189.32 189.41 39.75 189.41 39.75 189.41 51.95 189.2 53.96 188.95 53.96 188.9	29.75 186.54	29.75	75 186.44	29.75	187.02	35.34		186.88	25.74		186.88	25.74		186.97	6.27
3.48 189.01 34.82 187.22 34.82 187.22 43.54 189.09 38.11 188.95 9.33 188.88 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 41.78 189.15 RBK 37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 39.75 189.41 39.75 189.41 41.05 189.2 41.05 189.2 53.96 188.9	32.01 186.44	32.01	85 186.55	32.85	188.46	37.8		186.31	28.89		186.31	28.89		188.28	7.71
9.33 188.88 35.76 187.81 35.76 187.81 47 189.32 40.08 189.58 36.89 188.56 36.89 188.56 47.33 188.95 41.78 189.15 RBK 37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 39.75 189.41 39.75 189.41 41.05 189.2 53.96 188.9 53.96 188.9	33.82 187.12			34.65	189.58			186.6	31.53		186.6			189.55	
36.89 188.56 36.89 188.56 47.33 188.95 41.78 189.15 RBK 37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 39.75 189.41 39.75 189.41 41.05 189.2 53.96 188.9 47.1 189.33 Right Pin 41.05 189.2 55.96 188.9	35.19 187.71														
37.81 188.64 37.81 188.64 51.35 188.93 46.9 188.95 39.75 189.41 39.75 189.41 41.05 189.2 41.05 189.2 53.96 188.9	36.54 188.3		08 189.58	40.08	189.32			187.81	35.76		187.81	35.76		188.88	9.33
39.75 189.41 39.75 189.41 47.1 189.33 Right Pin 41.05 189.2 53.96 188.9	37.91 189.04 RB			_											
41.05 189.2 41.05 189.2 53.96 188.9	39.63 189.57				188.93	51.35									
45.77 188.82 45.77 188.82	43.25 189.07		96 188.9	53.96											
	46.88 189.32 Right							188.82	45.77		188.82	45.77			
	56.34 188.86	56.34													
	l														
	l														
	i														
	l														
	i			I											
	1			I											

	Photo	of Cross-Section 3	3 - Looking Downs	tream @ STA 13+	12	
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline
BKF Area	38.43	33.96	33.96	35.19	31.56	31.03
BKF Width	19.98	19.22	19.22	18.94	18.36	18.15
BKF Mean Depth	1.91	1.77	1.77	1.86	1.72	1.71
BKF Max Depth	3.01	2.73	2.73	2.95	2.60	2.60
W/D	10.46	10.87	10.87	10.19	10.68	10.62

Project Name Cross Section

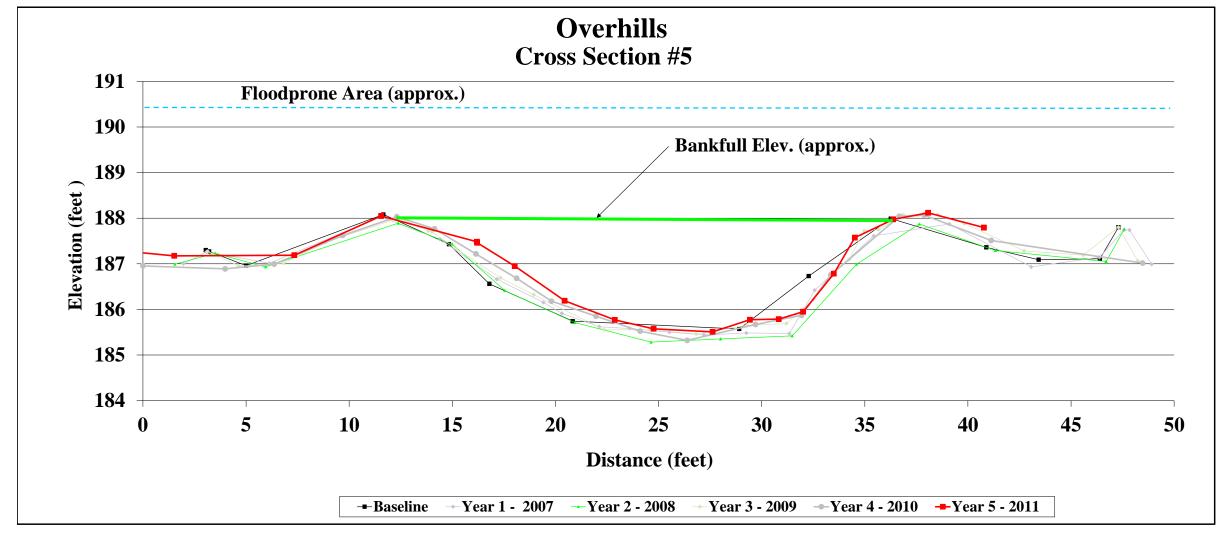
Feature Pool


Date As Built -7/04/08, Year 1 - 11/09/08, Year 2 - 8/12/08, Year 3 - 8/15/09, Year 4 -09/10, Year 5 09/11

Crew As Built - Bidelspach/Jean/Geenen, Year 1&2 - Geenen/Ballestero, Year 3 - Jean/Geenen, Year 4 - Jean/Geenen, Year 5 - Jean/Mazzochi/Baldwin

	ear 5 - 2011 011 Survey			Year 4 - 2010 2010 Survey			Year 3 - 2009 2009 Survey			ear 2 - 2008 008 Survey		7ear 1 - 200 2007 Survey			Baseline Survey	
tation ~	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes		Elevation Notes	Station	Elevation		Station	Elevation	Notes
-6.5	188.297		-8.72	188.843	- 10	0.11	188.69		2.27	189.11	2.24	189.15		2.04	189.13	
-0.16	188.453		-2.46	188.719		2.36	189.12		2.48	188.65	2.87	188.66		2.74	188.58	
5.66	188.264		3.85	188.649		2.9	188.52		8.08	188.69	7.53	188.67		7.31	188.61	
10.37	188.741		8.84	189.086		5.66	188.47		12.07	189.08	10.56	188.99	LBK	9.06	188.89	
13.9	187.938		12.21	189.08		9.97	189.01		14.15	187.85	13.14	188.94		12.06	188.99	LBI
15.64	186.006		13.94	188.425		12.28	188.83		15.97	187.67	17.08	187.18		16.45	187.43	
15.7	185.485		14.71	186.698		14.64	188.17		17.64	187.11	19.34	186.74		18.45	186.88	
18.2	184.922		17.28	185.086		15.76	186.65		19.05	185.63	19.81	185.16		20.09	186.27	
20.1	184.095		23.76	183.845		17.01	185.71		20.43	184.42	21.82	184.21		22.22	185.12	
22.07	184.438		30.92	186.562		18.18	184.92		20.52	184.33	22.82	183.09		25.87	184.66	
23.57	184.68		31.97	187.895		20.08	184.1		22.83	183.33	23.69	183.01		28.01	185.47	
25.41	184.449		36.47	188.791		21.77	183.8		25.24	183.34	25.3	183.27		28.79	186.87	
27.36	184.643		38.24	188.489		24.14	183.64		28.27	184.92	26.72	184.1		30.5	187.29	
29.29	186.21		44.45	188.267		24.56	183.8		29.7	187.27	27.42	184.09		32.24	188.05	
30.63	187.492					26.62	184.57		32.91	187.83	27.96	184.89		35.46	188.92	RB
33.62	188.405					27.7	185.38		35.98	188.86	28.85	186.94		39.85	188.47	
34.46	188.764					29.21	185.62		39.74	188.43	32.83	188.22		43.15	188.9	Right
37.05	188.295					29.32	186.08		42.81	188.86	35.51	188.89	RBK			
						29.88	187.2				41.76	188.31	D: 1 . D:			
						32.48	188.23				42.92	188.89	Right Pin			
						33.57	188.54									
						36.47	189.05 188.4									
						39.86										
						42.13	188.8									
			I			43	188.19									

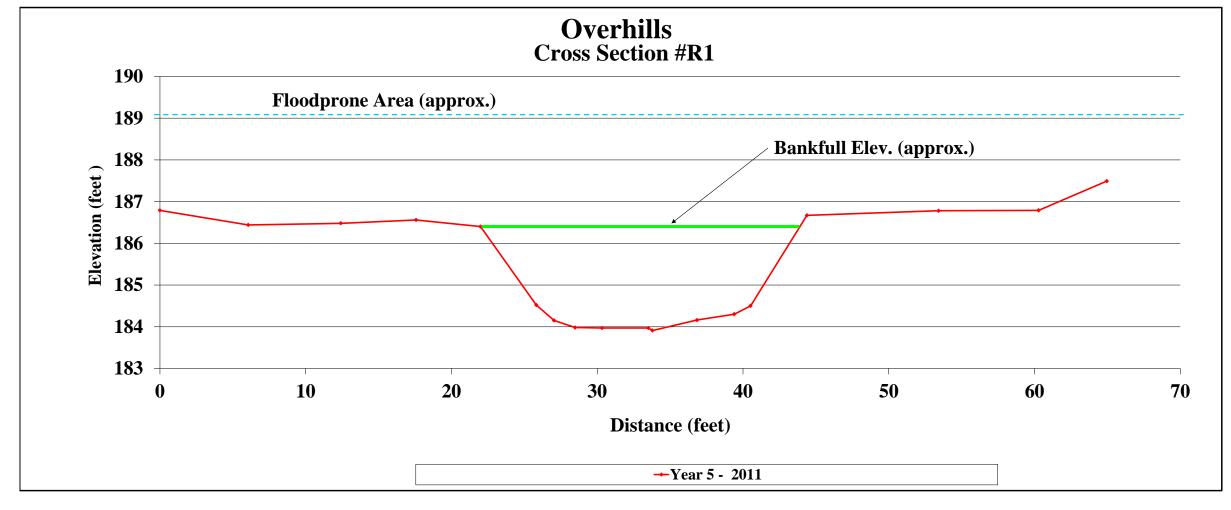
	Photo of Cross-Section 4 - Looking Upstream @ STA 20+93										
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline					
BKF Area	64.16	65.77	66.54	64.86	59.60	49.19					
BKF Width	24.06	22.40	23.39	23.11	22.25	23.19					
BKF Mean Depth	2.67	2.94	2.84	2.81	2.68	2.12					
BKF Max Depth	4.66	5.00	5.28	5.59	5.91	4.26					
W/D	9.02	7.70	8.23	8.23	8.31	10.93					



S Built -7/04/08, Year 1 - 11/09/08, Year 2 - 8/12/08, Year 3 - 8/15/09, Year 4 - 09/10, Year 5 09/11

	Year 5 - 2011 2011 Survey			Year 4 - 2010 2010 Survey			Year 3 - 2009 2009 Survey			ear 2 - 2008 2008 Survey		?ear 1 - 200 2007 Survey			Baseline Survey	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes	Station	Elevation	Notes	Station	Elevation	Notes
-2.5	187.349		0	186.953		3.14	187.27		1.55	186.99	1.97	187		3.05	187.3	Left I
1.52	187.173		3.99	186.887		4.64	186.95		3.5	187.23	3.09	187.26	Left Pin	3.21	187.27	
7.34	187.188		6.37	186.992		6.82	187.01		5.95	186.93	6.14	187.01		5.01	186.96	
11.55	188.046		9.69	187.621		8.86	187.47		12.38	187.89	11.52	188.03	LBK	11.66	188.08	LB
16.2	187.483		12.31	188.03		12.39	188		15	187.43	14.4	187.54		14.84	187.43	
16.21	187.459		14.14	187.765		13.84	187.72		17.55	186.41	17.16	186.66		16.8	186.56	
18.03	186.948		16.15	187.215		14.02	187.7		20.95	185.71	19.42	186.15		20.84	185.74	
20.45	186.187		18.12	186.681		15.21	187.32		24.63	185.28	20.32	185.91		28.91	185.57	
22.88	185.769		19.81	186.178		17.34	186.69		28.01	185.35	22.12	185.62		32.28	186.73	
24.76	185.574		21.97	185.85		18.95	186.32		31.48	185.42	23.61	185.58		36.26	187.99	RB
27.62	185.507		24.11	185.521		22.37	185.55		34.6	186.99	25.53	185.5		40.89	187.36	
29.43	185.771		26.39	185.319		24.59	185.55		37.64	187.87	27.2	185.44		43.43	187.09	
30.83	185.785		29.7	185.668		26.82	185.46		41.34	187.29	29.26	185.48		46.4	187.11	Right
32.01	185.947		31.93	185.87		29.28	185.65		46.7	187.05	31.34	185.47		47.3	187.8	
33.5	186.782		33.35	186.754		31.2	185.69		47.58	187.76	32.57	186.42				
34.52	187.573		36.67	188.038		32.52	186.22				35.43	187.61				
36.38	187.974		37.89	188.063		33.52	186.81				39.09	187.87	RBK			
38.07	188.117		41.13	187.51		34.24	187.09				43.07	186.93				
40.78	187.792		48.47	187.014		34.97	187.72				46.38	187.14	Right Pin			
						35.66	187.75				47.57	187.74				
						36.88	188.05				47.83	187.74				
						36.84	188.07				48.91	186.99				
						36.95	188.04									
						38.53	188.08									
			1			39.83	187.88									
			1			42.73	187.28									
			1			45.6	187.19									
			1			47.3	187.8									
						48.24	187.06		l		1					

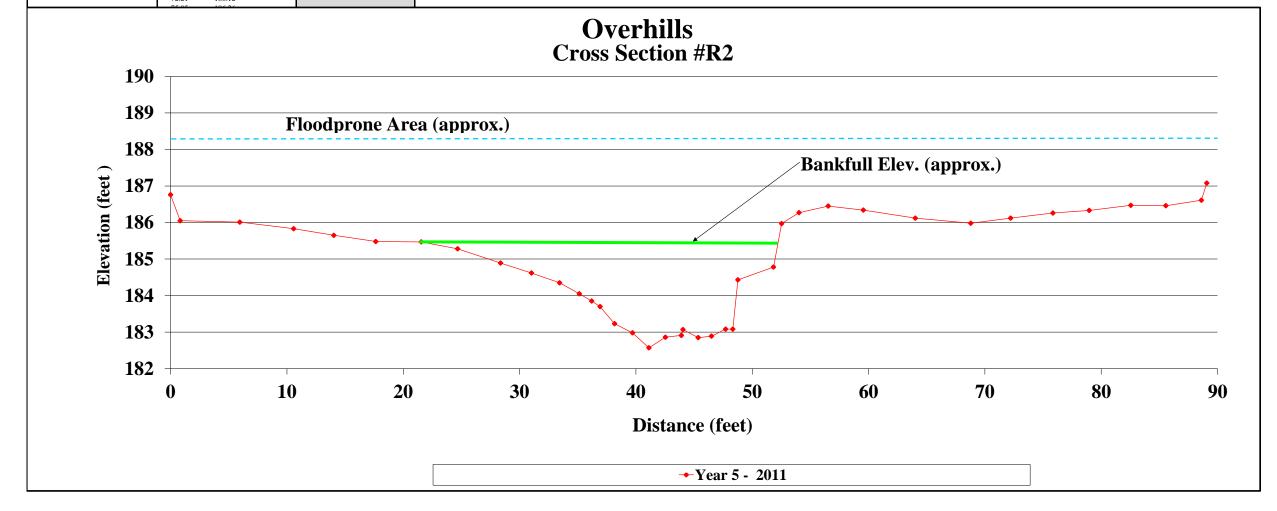
Photo of Cross-Section 5 - Looking Downstream @ STA 26+86									
	Year 5 - 2011	Year 4 - 2010	Year 3 - 2009	Year 2 - 2008	Year 1 - 2007	Baseline			
BKF Area	37.99	39.37	39.36	44.36	40.91	37.70			
BKF Width	26.08	24.30	24.41	24.63	24.50	24.16			
BKF Mean Depth	1.46	1.62	1.61	1.80	1.67	1.56			
BKF Max Depth	2.57	2.70	2.53	2.71	2.55	2.42			
W/D	17.90	15.00	15.14	13.67	14.68	15.48			



Overhills Cross Section R1 (Repair) Riffle eline - 03/11, Year 5 -09/11

	Year 6- 2012 2012 Survey			Year 5 - 201 2011 Survey		Baseline Survey		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
			0	186.79				
			6.06	186.44				
			12.41	186.48				
			17.57	186.56				
			21.99	186.4				
			25.82	184.52				
			27.04	184.15				
			28.48	183.98				
			30.33	183.97				
			33.51	183.97				
			33.79	183.91				
			36.85	184.16				
			39.4	184.3		DATA NOT	AVAILABLE	
			40.52	184.5				
			44.39	186.67				
			53.42	186.78				
			60.28	186.79				
			64.96	187.49				

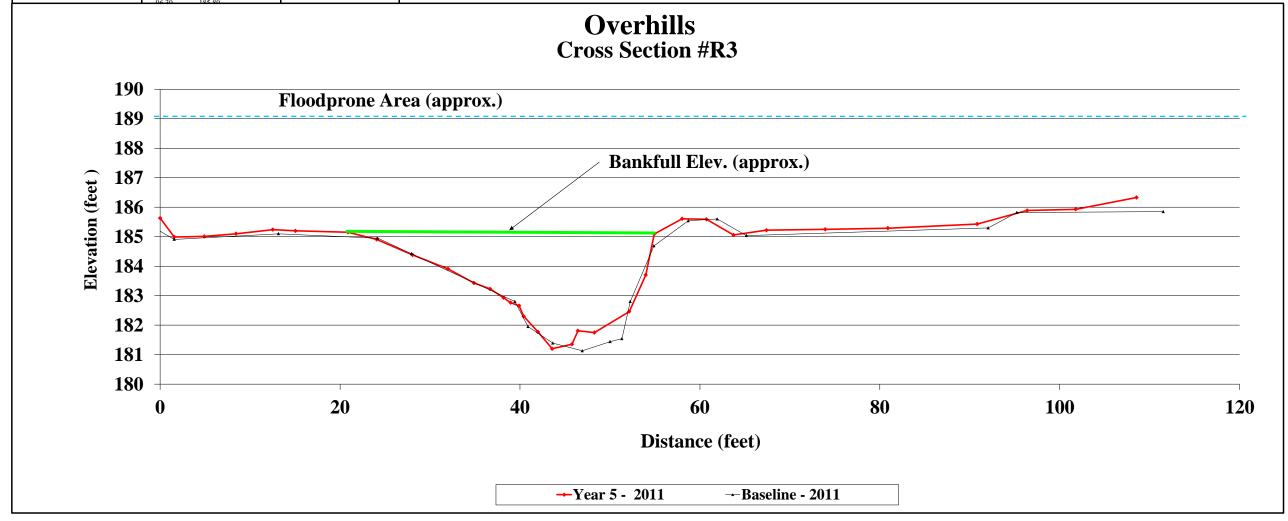
	Photo of Cross-Section R1 - Looking Downstream @ STA 32+82									
	Year 6- 2012	Year 5 - 2011	Asbuilt - 2011							
BKF Area		44.50								
BKF Width		26.62								
BKF Mean Depth		1.67								
BKF Max Depth		2.65								
W/D		15.94								



Pool
eline - 03/11, Year 1 - 09/11

	Year 6 - 2012 2012 Survey	2		Year 5 - 201 2011 Survey			Baseline Survey	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
			0	186.76				
			0.83	186.05				
			5.95	186.01				
			10.58	185.83				
			14.03	185.65				
			17.64	185.48				
			21.55	185.47				
			24.68	185.28				
			28.37	184.89				
			31.02	184.62				
			33.44	184.35				
			35.14	184.05				
			36.2	183.85		DATA NOT	AVAILABLE	
			36.92	183.7				
			38.17	183.23				
			39.71	182.98				
			41.12	182.57				
			42.54	182.86				
			43.91	182.91				
			44.05	183.07				
			45.36	182.85				
			46.5	182.89				
			47.71	183.08				
			48.33	183.08				
			48.77	184.43				
			51.83	184.78				
			52.53	185.97				
			54.02	186.27				
			56.5	186.5				
			59.55	186.34				
			64.02	186.12				
			68.79	185.98				
			72.21	186.12				

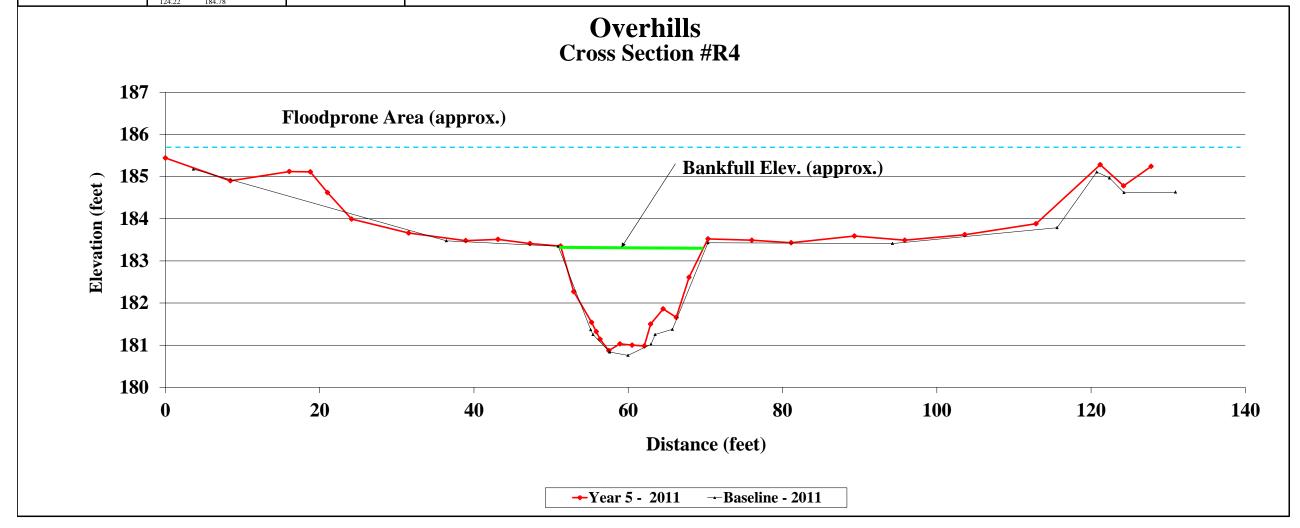
Photo of Cross-Section R2 - Looking Downstream @ STA 34+09									
				Year 6 - 2012	Year 5 - 2011	Baseline			
BKF Area					43.02				
BKF Width					30.69				
BKF Mean Depth					1.40				
BKF Max Depth					2.90				
W/D					21.92				



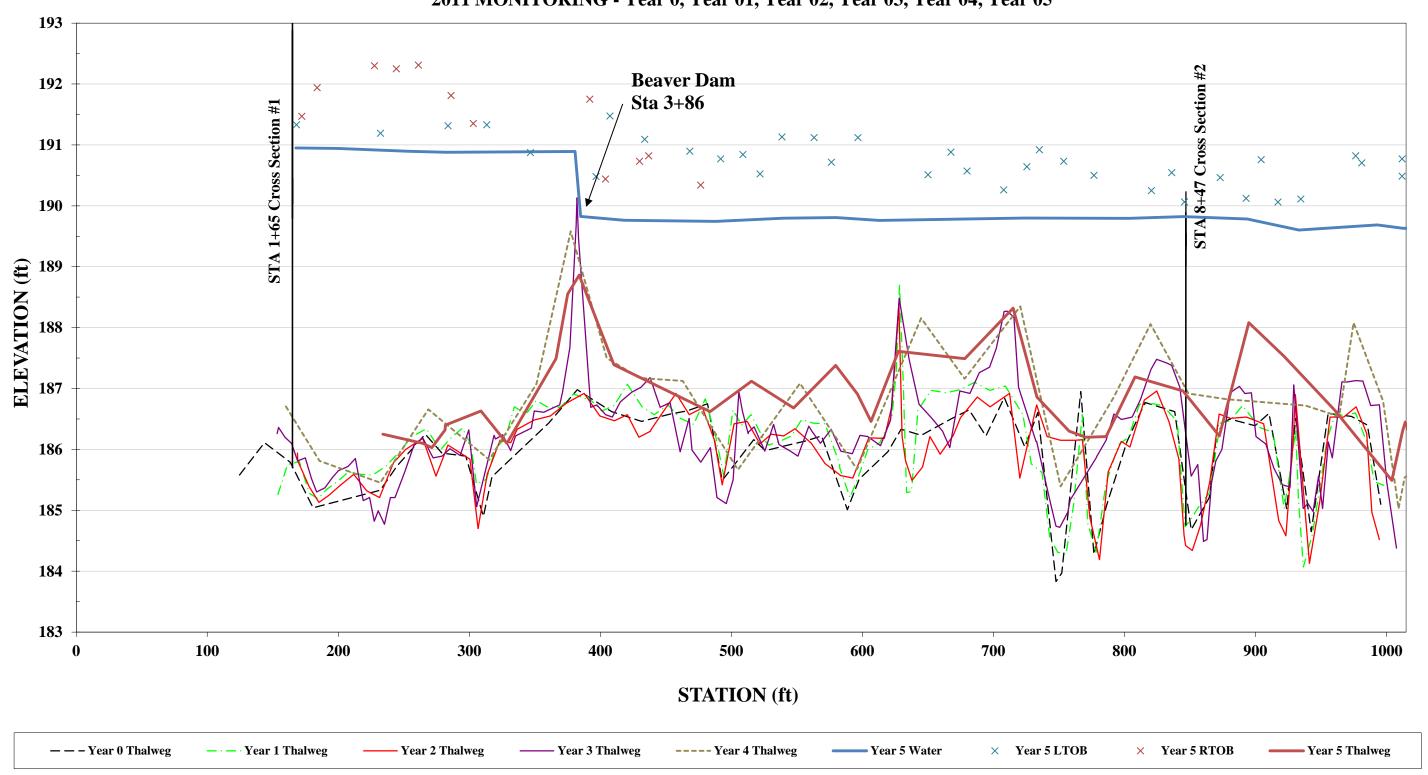
Pool
Baseline - 03/11, Year 5 - 09/11

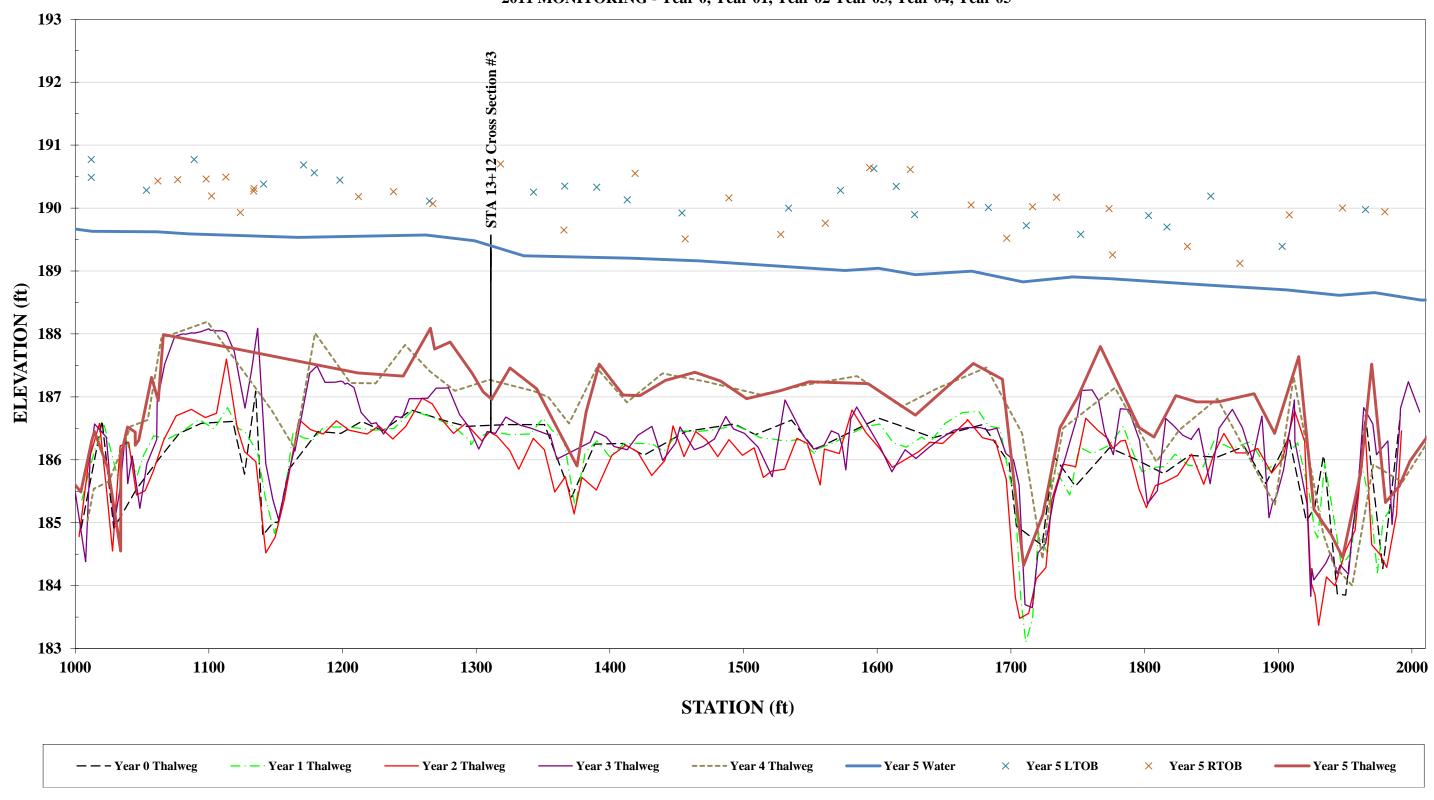
	Year 6 - 2012 2012 Survey		Year 5 - 2011 2011 Survey	В	aseline - 2011 Survey
Station	Elevation Notes	Station	Elevation Notes	Station	Elevation Notes
		0	185.63	-20.82	185.5
		1.57	184.99	-3.34	185.78
		4.91	185.01	1.57	184.91
		8.44	185.1	13.15	185.1
		12.52	185.24	24.19	184.95
		15.04	185.2	27.95	184.42
		20.87	185.15	39.44	182.8
		24.07	184.91	40.89	181.95
		28.07	184.38	43.65	181.39
		32.01	183.91	46.93	181.13
		34.88	183.43	50.02	181.44
		36.68	183.23	51.33	181.54
		38.18	182.93	52.26	182.8
		38.97	182.76	54.89	184.69
		39.9	182.66	58.71	185.54
		40.41	182.3	61.93	185.6
		42	181.77	65.16	185.04
		43.58	181.2	92.05	185.3
		45.78	181.35	95.24	185.82
		46.44	181.81	111.51	185.85
		48.27	181.75		
		52.15	182.46		
		53.98	183.7		
		54.93	185.09		
		58.03	185.61		
		60.73	185.59		
		63.74	185.06		
		67.41	185.22		
		73.9	185.3		
		80.90	185.29		
		90.83	185.43		
		06.20	195 90		

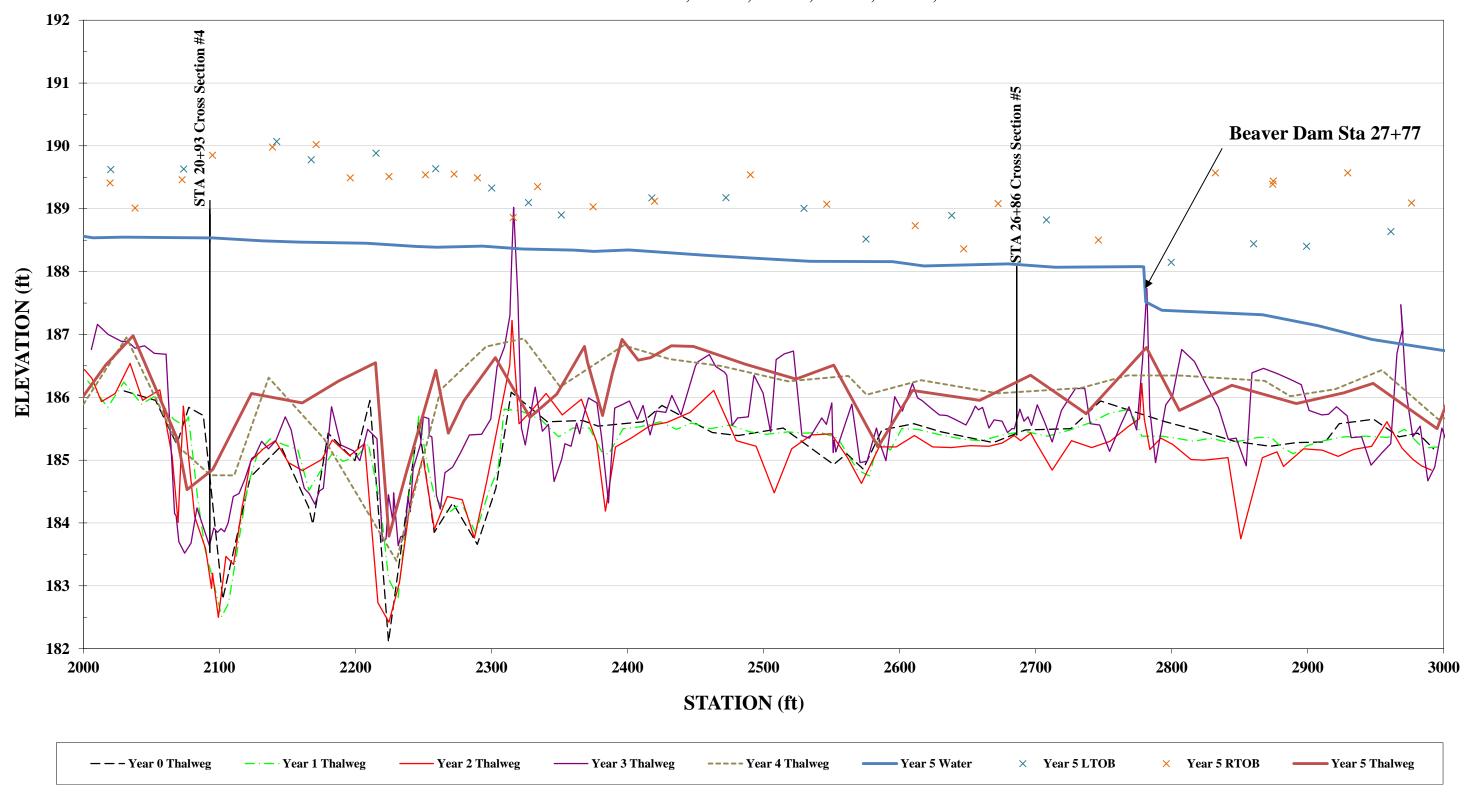
Photo of Cross-Section R3 - Looking Downstream @ STA 37+28								
			Year 6 - 2012	Year 5 - 2011	Baseline - 2011			
BKF Area				66.57	63.05			
BKF Width				34.41	31.87			
BKF Mean Depth				1.93	1.98			
BKF Max Depth				3.95	3.85			
W/D				17.83	16.10			

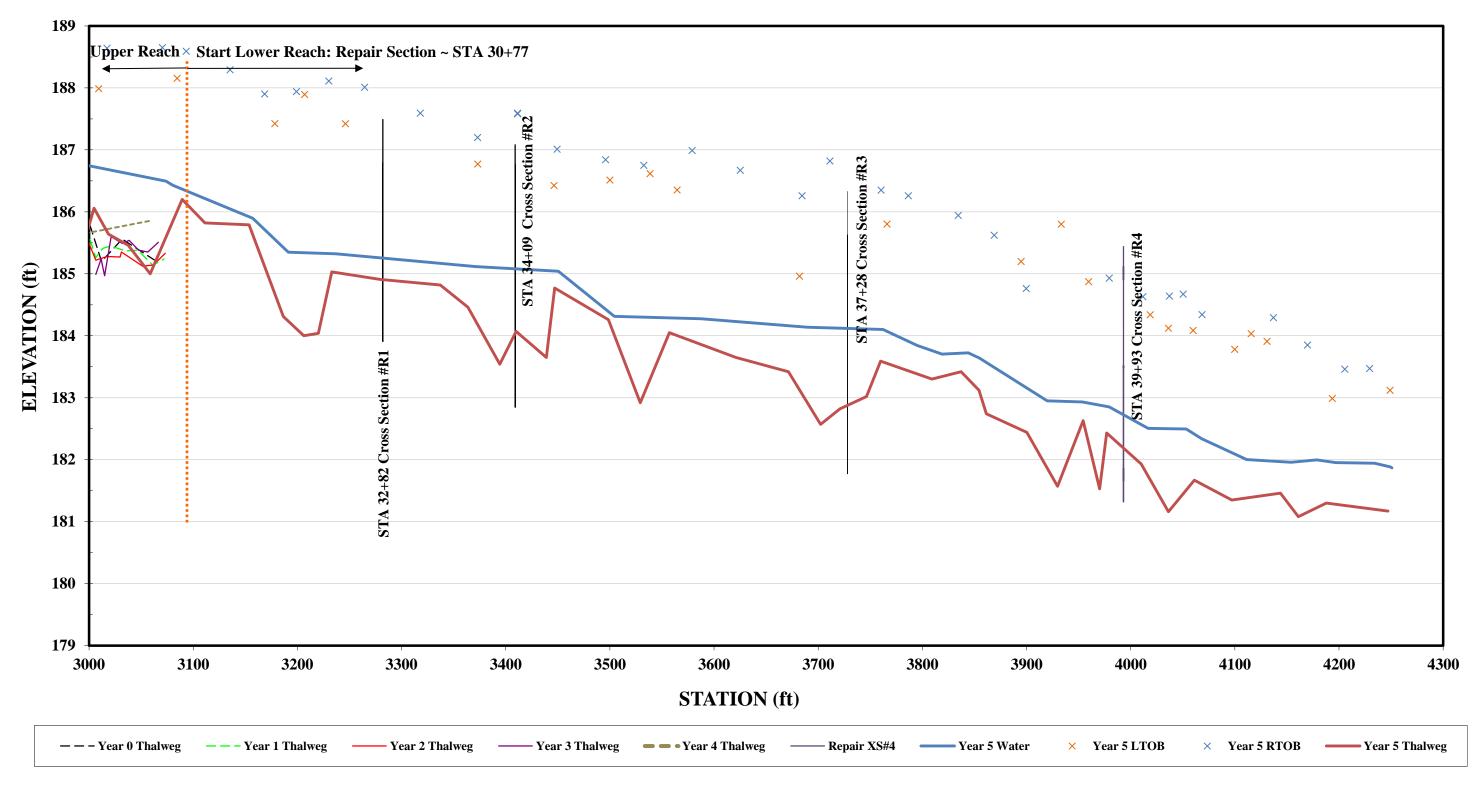


me Overhills
on Cross Section R4 (Repair)
Riffle
Baseline - 03/11, Year 5 - 09/11
Raceline - Turner Land Surveying Year 5.

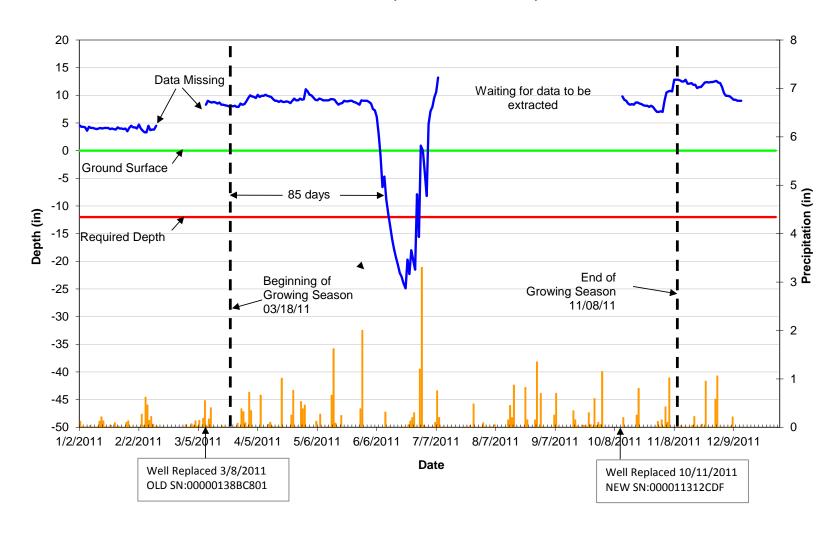

Station	Elevation	Notes				Survey	
			Station	Elevation	Notes	Station	Elevation Note
			0	185.44		3.62	185.175
			8.42	184.9		36.43	183.476
			16.06	185.12		50.92	183.346
			18.79	185.11		55.14	181.366
			21.01	184.62		55.44	181.251
			24.14	183.99		57.6	180.836
			31.53	183.66		59.97	180.758
			38.93	183.48		62.96	181.021
			43.12	183.51		63.49	181.254
			47.26	183.41		65.72	181.375
			51.23	183.35		70.34	183.43
			52.93	182.27		94.25	183.412
			55.26	181.54		115.6	183.787
			55.86	181.32		120.75	185.107
			56.35	181.14		122.4	184.965
			57.48	180.87		124.27	184.619
			58.92	181.03		130.96	184.63
			60.5	181			
			62.08	180.98			
			62.9	181.5			
			64.53	181.86			
			66.23	181.66		I	
			67.88	182.61			
			70.34	183.52		Ī	
			76.02	183.49		I	
			81.12	183.43		I	
			89.33	183.59		I	
			95.85	183.49		I	
			103.6	183.6		I	
			112.87	183.88		I	
			121.19	185.28		I	


	Photo of Cross-Section R4 - Looking Downstream @ STA 39+93									
				Year 6 - 2012	Year 5 - 2011	Baseline - 2011				
BKF Area BKF Width BKF Mean Depth BKF Max Depth W/D					29.90 18.65 1.60 2.48 11.66	33.29 19.24 1.73 2.59 11.12				

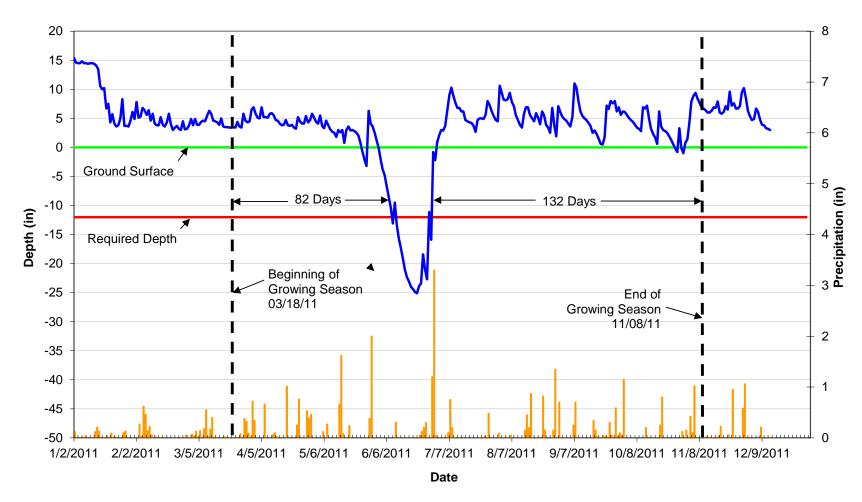

Overhills Profile -Upper Reach STA 0+00 - STA 10+00 2011 MONITORING - Year 0, Year 01, Year 02, Year 03, Year 04, Year 05


Overhills Profile - Upper Reach STA 10+00 - STA 20+00 2011 MONITORING - Year 0, Year 01, Year 02 Year 03, Year 04, Year 05

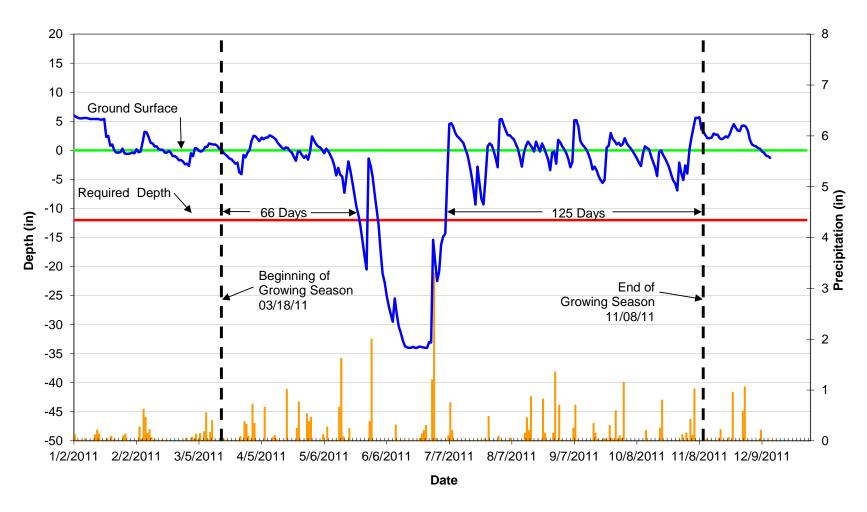
Overhills Profile - Upper Reach STA 20+00 - STA 30+00 2011 MONITORING - Year 0, Year 01, Year 02, Year 03, Year 04, Year 05

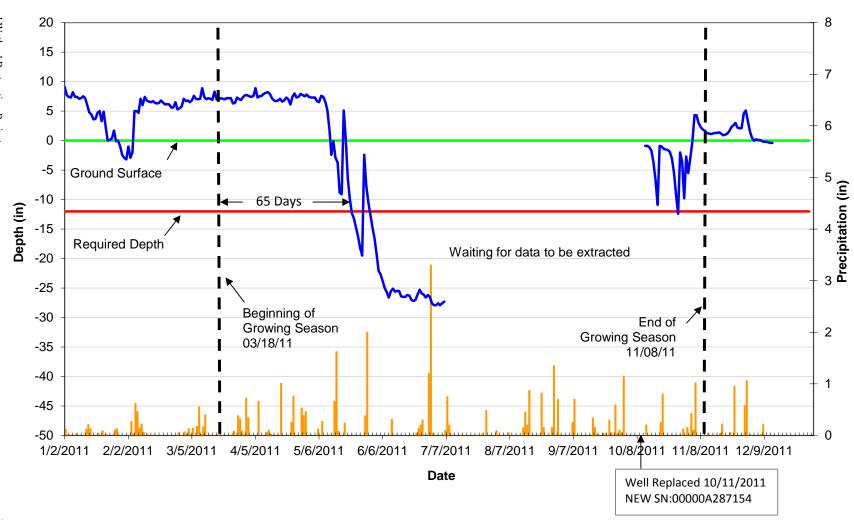


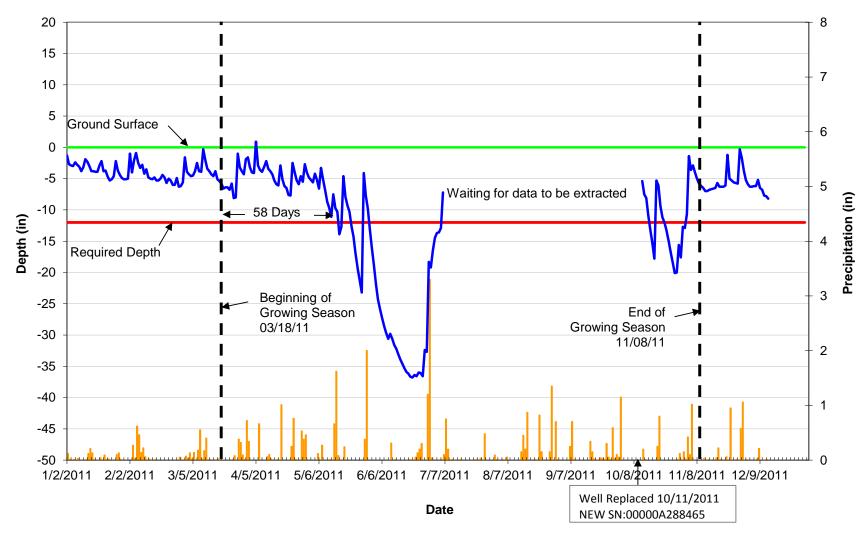
Overhills Profile - Upper & Lower Reaches STA 30+00 - STA 40+00 2011 MONITORING - Year 0, Year 01, Year 02, Year 03, Year 04, Year 05



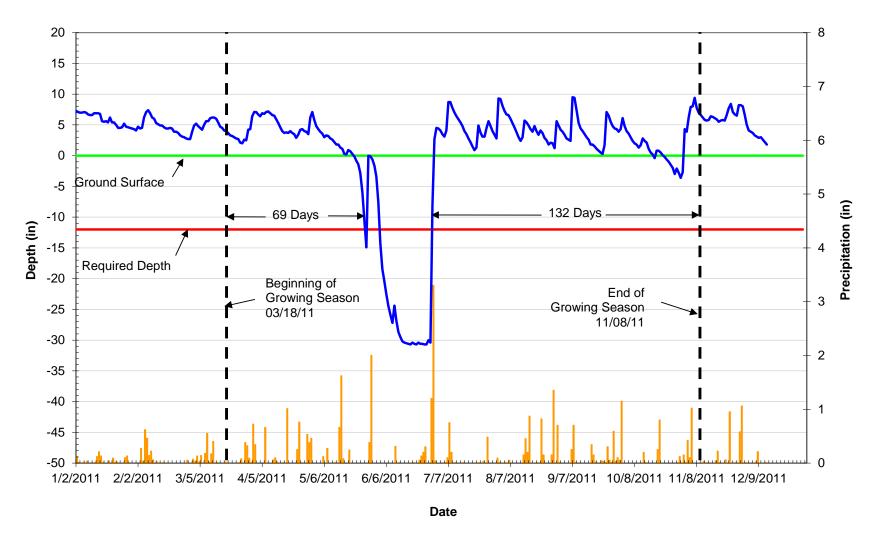
APPENDIX E. WETLAND ASSESSMENT


2011 Groundwater Data Well JR-1 (SN: 0000138BACBE)

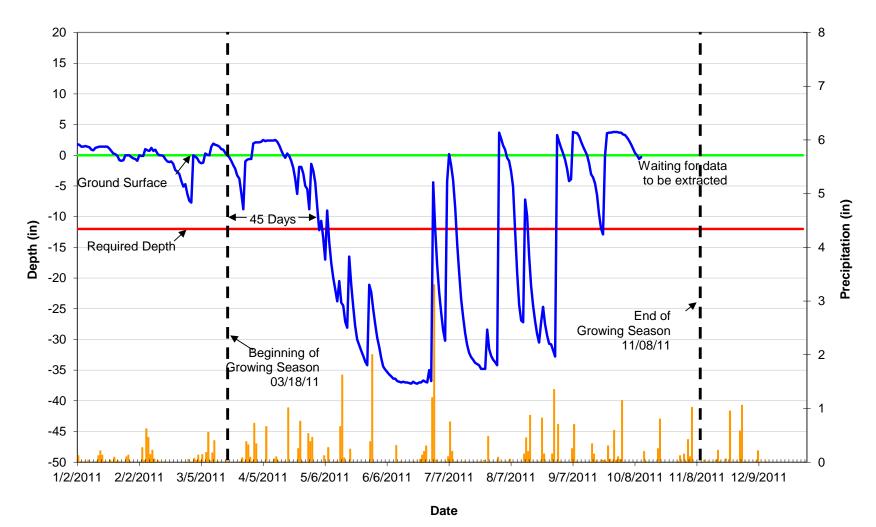

2011 Groundwater Data Well JR-2 (SN: 00000A28BE77)


2011 Groundwater Data Well JR-3 (SN: 0000011311060)

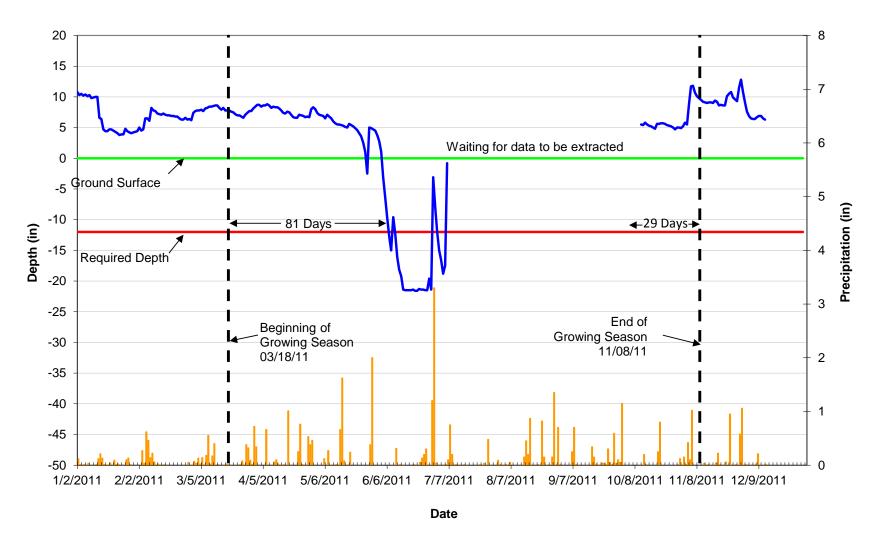
2011 Groundwater Data Well JR-4 (SN: 00000A28813D)

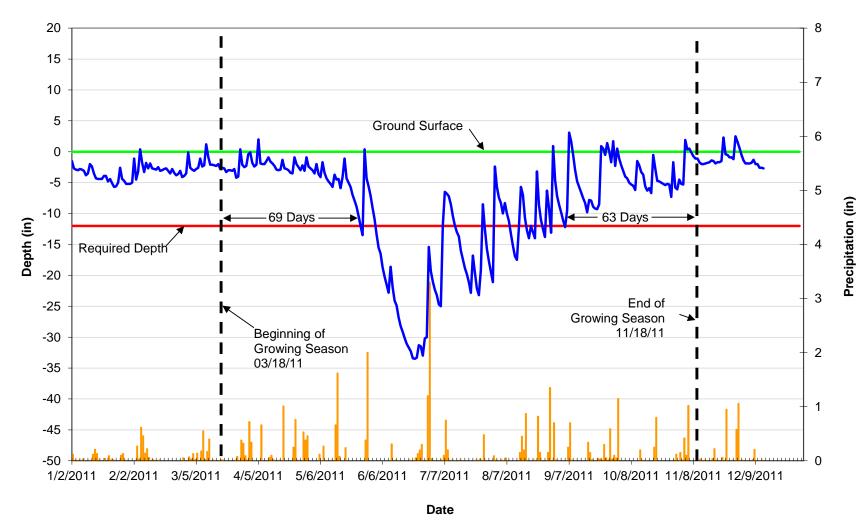


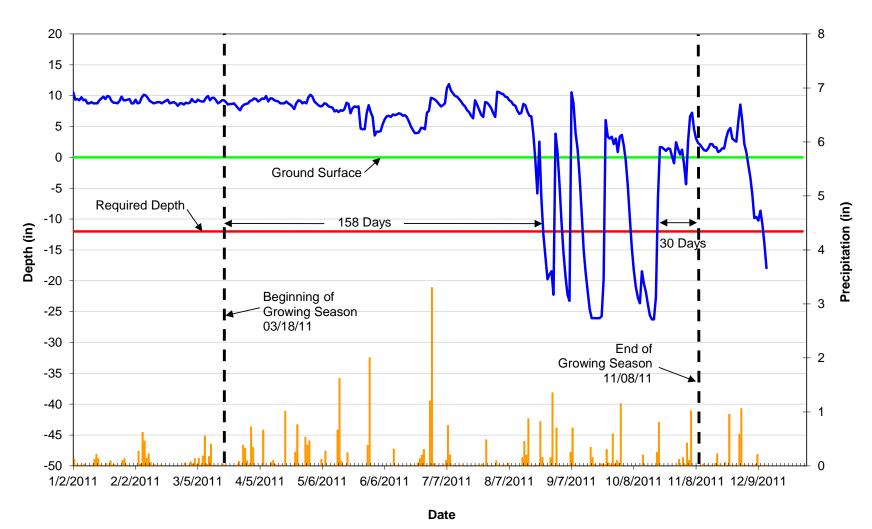
2011 Groundwater Data Well JR-5 (SN: 00000A278DE1)

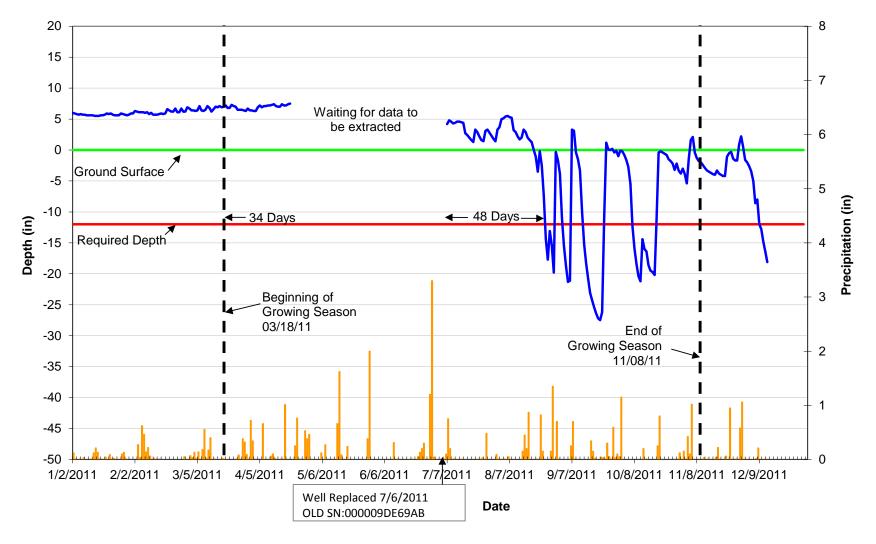


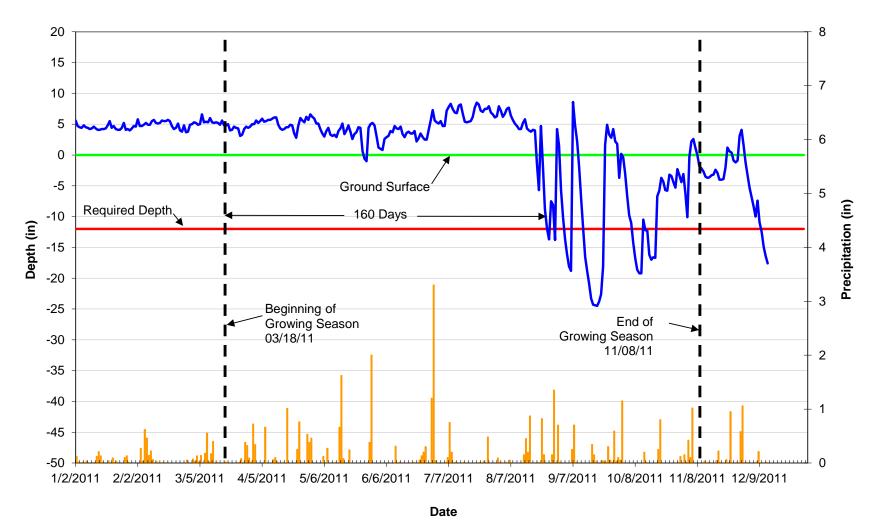
Page 72 November 2011

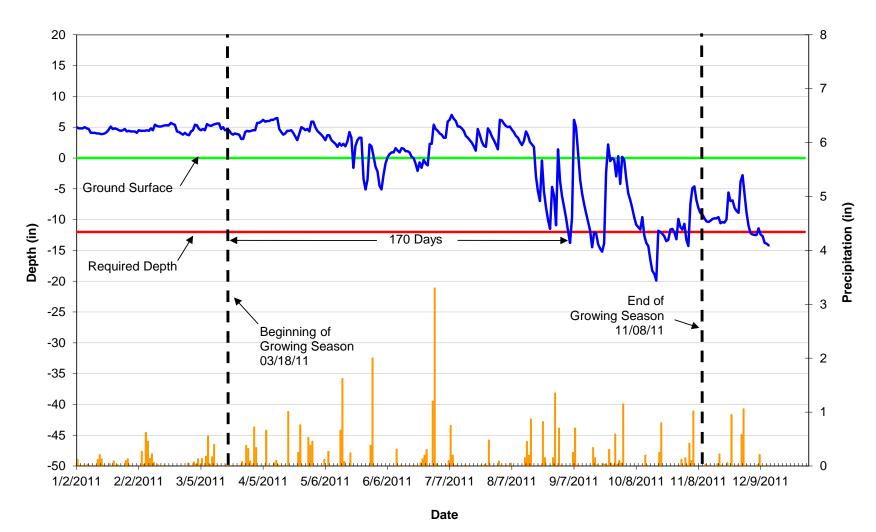

2011 Groundwater Data Well JR-6 (SN: 000011313D14)

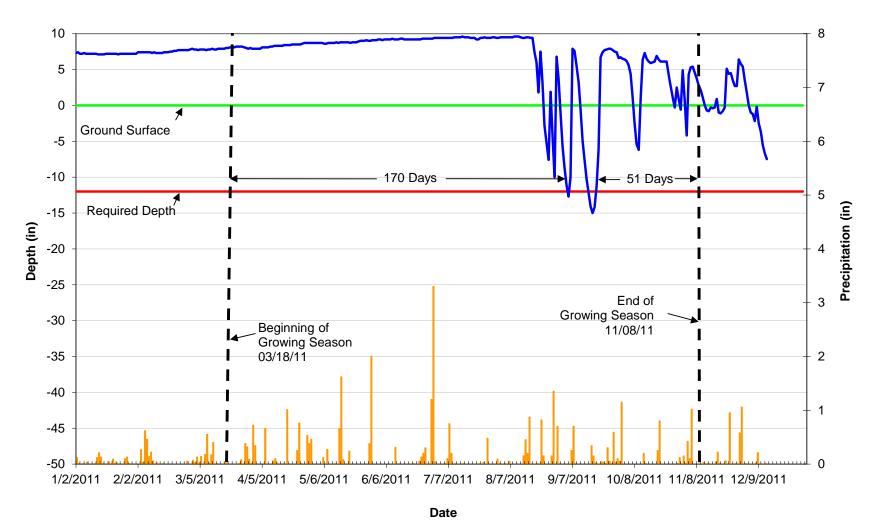

2011 Groundwater Data Well JR-7 (SN: 000001314FCEF)

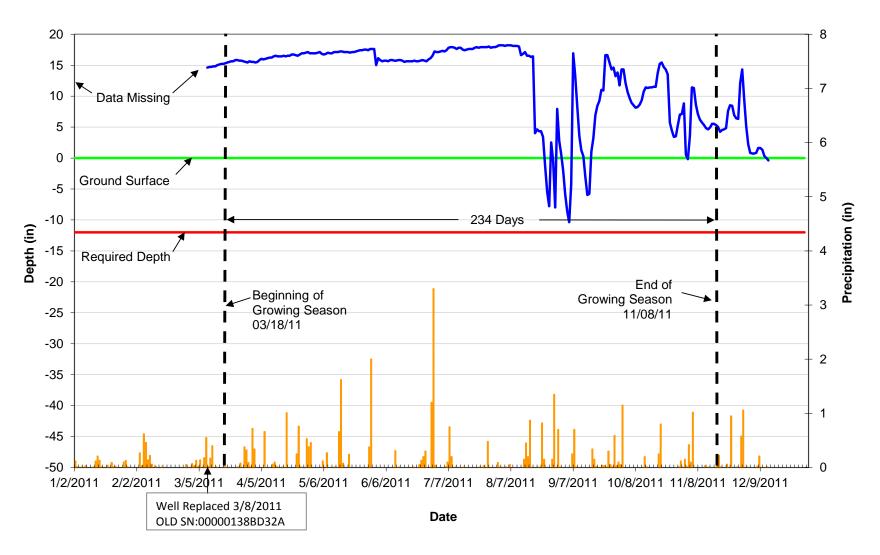

2011 Groundwater Data Well JR-8 (SN: 00000136ACA3C)

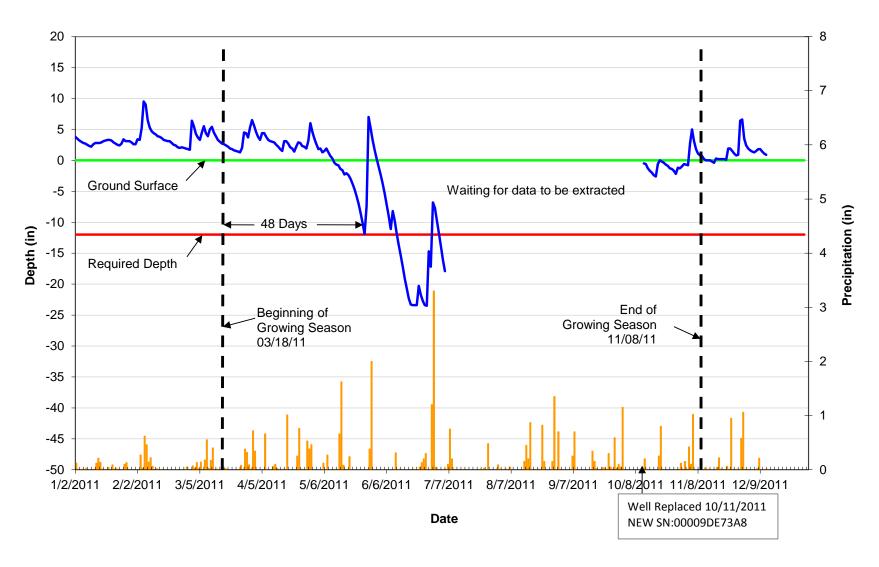

2011 Groundwater Data Well JR-9 (SN: 00000EBDAB32)

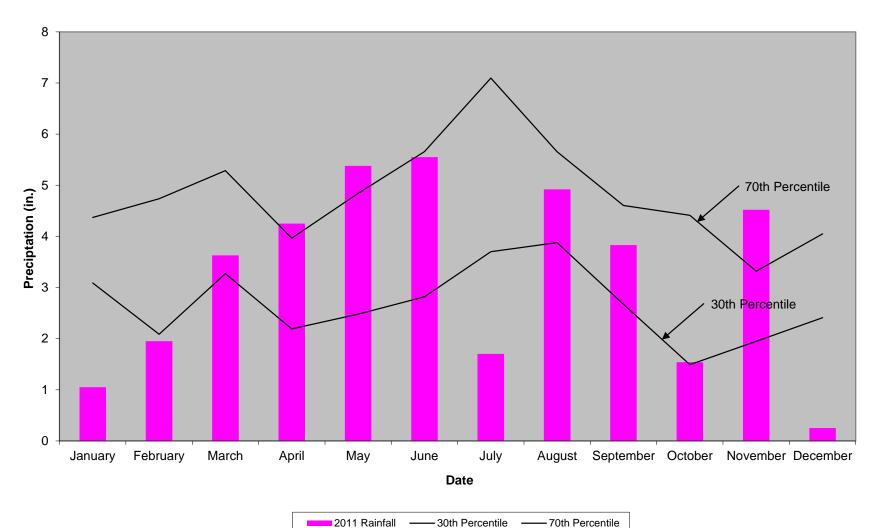

2011 Groundwater Data Well JR-10 (SN: 000009DE3E2D)


2011 Groundwater Data Well JR-11 (SN: 000009DE6D56)


2011 Groundwater Data Well JR-12 (SN: 00000A28A6E4)


2011 Groundwater Data Well JR-13 (SN: 00000A28BC50)


2011 Groundwater Data Well JR-14 (SN: 00000A285751)


2011 Groundwater Data Well JR-15 (SN: 00001314EB42)

2011 Groundwater Data Reference Well 1 (SN: 00000EBD001B)

2011 Overhills 30-70 Percentile Graph Harnett County, North Carolina

Page 84 November 2011

0		•		ts for Years 1 -	
Ove	rhills/Jumping R				
Cuara	Success Criteria				
Guage	Year 1 (2007)	Year 2 (2008)	Year 3 (2009)	Year 4 (2010)	Year 5 (2011)
GW1	Yes/57 days (24	Yes/77 days	Yes/121 days	Yes/100 days	Yes/85 days*
	percent)	(33 percent)	(52 percent)	(43 percent)	(36 percent)
GW2	Yes/67 days (29	Yes/78 days	Yes/234 days	Yes/115 days	Yes/132 days
	percent)	(33 percent)	(100 percent)	(49 percent)	(56 percent)
GW3	Yes/63 days (27	Yes/78 days	Yes/234 days	Yes/105 days	Yes/125 days
	percent)	(33 percent)	(100 percent)	(45 percent)	(53 percent)
GW4	Yes/61 days (26	Yes/70 days	Yes/234 days	Yes/41 days	Yes/65 days*
	percent)	(30 percent)	(100 percent)	(18 percent)	(28 percent)
GW5	No	Yes/63 days	Yes/234 days	Yes/92 days	Yes/58 days*
		(27 percent)	(100 percent)	(39 percent)	(25 percent)
GW6	Yes/52 days (22	Yes/75 days	Yes/234 days	Yes/68 days	Yes/132 days
	percent)	(32 percent)	(100 percent)	(29 percent)	(56 percent)
GW7	Yes/56 days (24	Yes/61 days	Yes/57 days	Yes/32 days	Yes/45 days*
	percent)	(26 percent)	(24 percent)	(14 percent)	(19 percent)
GW8	Yes/65 days (28	Yes/121 days	Yes/234 days	Yes/43 days	Yes/81 days*
	percent)	(52 percent)	(100 percent)	(18 percent)	(35 percent)
GW9	Yes/56 days (24	Yes/76 days	Yes/234 days	Yes/41 days	Yes/69 days
	percent)	(32 percent)	(100 percent)	(18 percent)	(29 percent)
GW10	No	Yes/39 days	Yes/63 days	Yes/123 days	Yes/158 days
		(17 percent)	(27 percent)	(53 percent)	(68 percent)
GW11	No	Yes/39 days	Yes/70 days	Yes/123 days	Yes/48 days*
		(17 percent)	(30 percent)	(53 percent)	(21 percent)
GW12	No	Yes/33 days	Yes/88 days	Yes/127 days	Yes/160 days
		(14 percent)	(38 percent)	(54 percent)	(68 percent)
GW13	No	Yes/54 days	Yes/130 days	Yes/88 days	Yes/170 days
		(23 percent)	(56 percent)	(38 percent)	(73 percent)
GW14	No	Yes/56 days	Yes/109 days	Yes/127 days	Yes/170 days
		(24 percent)	(47 percent)	(54 percent)	(73 percent)
GW15	Yes/45 days (19	Yes/71 days	Yes/130 days	Yes/234 days	Yes/234 days
	percent)	(30 percent)	(56 percent)	(100 percent)	(100 percent)
Reference	N/A	Yes/88 days	Yes/109 days	Yes/103 days	Yes/48 days*
		(38 percent)	(47 percent)	(44 percent)	(21 percent)

^{*} Waiting for data extraction: hydroperiod is likely longer